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Abstract

Feature grouping has been demonstrated to be promis-
ing in learning with high-dimensional data. It helps re-
duce the variances in the estimation and improves the
stability of feature selection. One major limitation of ex-
isting feature grouping approaches is that some similar
but different feature groups are often mis-fused, lead-
ing to impaired performance. In this paper, we propose
a Discriminative Feature Grouping (DFG) method to
discover the feature groups with enhanced discrimina-
tion. Different from existing methods, DFG adopts a
novel regularizer for the feature coefficients to trade-
off between fusing and discriminating feature groups.
The proposed regularizer consists of a `1 norm to en-
force feature sparsity and a pairwise `∞ norm to encour-
age the absolute differences among any three feature
coefficients to be similar. To achieve better asymptotic
property, we generalize the proposed regularizer to an
adaptive one where the feature coefficients are weight-
ed based on the solution of some estimator with root-n
consistency. For optimization, we employ the alternat-
ing direction method of multipliers to solve the pro-
posed methods efficiently. Experimental results on syn-
thetic and real-world datasets demonstrate that the pro-
posed methods have good performance compared with
the state-of-the-art feature grouping methods.

Introduction
Learning with high-dimensional data is a challenge especial-
ly when the size of the data is not very large. Sparse model-
ing, which selects only a relevant subset of the features, has
thus received increasing attention. Lasso (Tibshirani 1996)
is one of the most popular sparse modeling methods and has
been well studied in the literature. However, in the presence
of highly correlated features, Lasso tends to select only
one or some of those features, leading to unstable estima-
tions and impaired performance. To address this issue, the
group lasso (Yuan and Lin 2006) has been proposed to se-
lect groups of features by using the `1/`2 regularizer. As ex-
tensions of the group lasso, several methods are proposed to
learn from overlapping groups (Zhao, Rocha, and Yu 2009;
Jacob, Obozinski, and Vert 2009; Yuan, Liu, and Ye 2011).
∗Both authors contribute equally.
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Other extensions of the group lasso, e.g., (Kim and Xing
2010; Jenatton et al. 2010), aim to learn from the given
tree structured information among features. However, those
methods require the feature groups to be given as a priori in-
formation. That is, they can utilize the given feature groups
to obtain solutions with group sparsity, but lack the ability
of learning the feature groups.

Feature grouping techniques, which find the groups of
highly correlated features automatically from data, thus have
been proposed to address this issue. These techniques help
gain additional insights to understand and interpret data,
e.g., finding co-regulated genes in microarray analysis (Det-
tling and Bühlmann 2004). Feature grouping techniques as-
sume that the features with identical coefficients form a fea-
ture group. The elastic net (Zou and Hastie 2005) is a rep-
resentative feature grouping approach, which combines the
`1 and `2 norms to encourage highly correlated features to
have identical coefficients. The fused Lasso family, includ-
ing the fused Lasso (Tibshirani et al. 2005), graph based
fused Lasso (Kim and Xing 2009), and generalized fused
Lasso (GFLasso) (Friedman et al. 2007), uses some fused
regularizers to directly force the feature coefficients of each
pair of features to be close based on the `1 norm. Recent-
ly, the OSCAR method (Bondell and Reich 2008), which
combines a `1 norm and a pairwise `∞ norm on each pair
of features, has shown good performance in learning fea-
ture groups. Moreover, some extensions of OSCAR have al-
so been proposed (Shen and Huang 2010; Yang et al. 2012;
Jang et al. 2013) to further reduce the estimation bias.

However, when there exist some similar but still differ-
ent feature groups, we find that empirically all the existing
feature grouping methods tend to fuse those groups togeth-
er as one group, thus leading to impaired learning perfor-
mance. Figure 1(a) shows an example, where G1 and G2

are similar but different feature groups, and they are easy to
be mis-fused by existing feature grouping methods. In many
real-world applications with high-dimensional data, e.g., mi-
croarray analysis, the phenomena that feature groups with
similar but different feature coefficients appear frequently.
For example, by using the method in (Jacob, Obozinski, and
Vert 2009), the averaged coefficients of each feature group
among the given 637 groups, which correspond to the bio-
logical gene pathways, in the breast cancer data is shown in
Figure 1(b) and we can observe that there are a lot of feature
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Figure 1: (a) The misfusion problem; (b) A study of the averaged
feature coefficients of the groups in microarray data.

groups with similar but different (averaged) feature coeffi-
cients. This problem is also found in some other real-world
applications.

In order to solve the aforementioned problem in exist-
ing feature grouping methods, we propose a Discriminative
Feature Grouping (DFG) method to not only discover fea-
ture groups but also discriminate similar feature groups. The
DFG method proposes a novel regularizer on the feature co-
efficients to trade-off between fusing and discriminating fea-
ture groups. The proposed regularizer consists of a `1 norm
to enforce feature sparsity and a pairwise `∞ norm to en-
courage |βi − βj | and |βi − βk| to be identical for any three
feature coefficients βi, βj and βk. As analyzed, the pairwise
`∞ regularizer is capable of both grouping features and dis-
criminating similar feature groups. Moreover, to achieve bet-
ter asymptotic property, we propose an adaptive version of
DFG, the ADFG method, in which the feature coefficients
are weighted based on the solution of some estimator with
root-n consistency. For optimization, we employ the alter-
nating direction method of multipliers (ADMM) (Boyd et al.
2011) to solve the proposed methods efficiently. For analy-
sis, we study the asymptotic properties of the DFG and AD-
FG models, where the feature groups obtained by the ADFG
method can recover the ground truth with high probability.
Experimental results conducted on synthetic and real-world
datasets demonstrate that the proposed methods are compet-
itive compared with existing feature grouping techniques.

Notations: Let X ∈ Rn×d be the predictor matrix or the
data matrix and y ∈ Rn be the responses or labels, where
n is the number of samples and d is the number of features.
For any vector x, ‖x‖p denotes its `p-norm. |A| denotes the
cardinality of a set A.

Background
In this section, we briefly overview some existing feature
grouping techniques.
As a representative of the fused Lasso family, the GFLasso

method solves the following optimization problem:

min
β
L(β) + λ1‖β‖1 + λ2

d∑
i<j

|βi − βj |, (1)

where L(·) denotes the loss function and λ1 and λ2 are
regularization parameters. We use the square loss L(β) =
1
2‖y −Xβ‖22 in this paper. In problem (1), the `1 norm en-
courages the sparsity in β and the fusion term (i.e., the last

term) enforces any two coefficients βi and βj to be identical,
which is a way to discover feature groups.

The OSCAR method proposes a pairwise `∞ regularizer
and solves the following optimization problem:

min
β
L(β) + λ1‖β‖1 + λ2

d∑
i<j

max {|βi|, |βj |}. (2)

The pairwise `∞ regularizer encourages the absolute values
of every two coefficients |βi| and |βj | to be identical. Based
on OSCAR, some non-convex extensions, e.g., the ncFGS
and ncTFGS methods (Yang et al. 2012), are proposed to
further reduce the estimation bias. The objective functions
of the ncFGS and ncTFGS methods are formulated as

min
β
L(β) + λ1‖β‖1 + λ2

d∑
i<j

∣∣∣|βi| − |βj |∣∣∣, (3)

min
β
L(β) + λ1

d∑
i

Jτ (|βi|) + λ2

d∑
i<j

Jτ (||βi| − |βj ||), (4)

where Jτ (x) = min(xτ , 1) and τ is a threshold. When
τ →∞, problem (4) reduces to problem (3). The third terms
in both problems encourage any pair of coefficients to be
similar. Note that when λ1 ≥ d−1

2 λ2, problem (3) reduces to
problem (2) since max(|x|, |y|) = 1

2 (|x|+ |y|+ ||x| − |y||).

Discriminative Feature Grouping
In this section, we introduce the DFG method and its adap-
tive extension, the ADFG method. Moreover, we also dis-
cuss how to incorporate some additional information into
our proposed methods.

DFG Method
Problems defined in Eqs. (1-4) impose a fusion-like regular-
izer for any two feature coefficients βi and βj , where fea-
tures with identical coefficients are assumed to be from the
same feature group. One major limitation of those existing
feature grouping methods is that some similar but different
feature groups are easy to be mis-fused. To address the issue,
the DFG method is proposed with the objective function for-
mulated as

min
β
L(β) + λ1‖β‖1 + λ2

d∑
i=1

d∑
j<k
j,k 6=i

max{|βi − βj |, |βi − βk|},

(5)
where λ1 and λ2 are positive regularization parameters. We
denote the third term in problem (5) as ΩGD(β). The `1
regularizer (i.e., the second term in problem (5)) encour-
ages feature sparsity and the pairwise `∞ regularizer in
ΩGD(·) encourages |βi − βj | and |βi − βk| to be iden-
tical for any triple of feature indices (i, j, k). Note that
max{|βi − βj |, |βi − βk|} can be reformulated as

max{|βi−βj |, |βi−βk|} =
1

2
|βj −βk|+ |βi−

βj + βk
2

|. (6)

Then we can see two effects of ΩGD(β): (1) the first term
in the right-hand side of Eq. (6) is the fusion regularizer to
enforce βj and βk to be grouped similar to the fused Lasso



family (regardless of βi), which reflects the grouping prop-
erty; (2) the second term encourages βi to approach the aver-
age of βj and βk, making βi, βj and βk stay discriminative
unless all the three coefficients become identical, which is
the discriminating effect. Therefore, the regularizer ΩGD(β)
not only groups the features in a similar way to the fused
Lasso but also discriminates the similar groups.

ADFG Method
The first and second terms at the right-hand side of Eq. (6)
are denoted by ΩG(·) and ΩD(·) respectively. ΩD(·) encour-
ages one feature coefficient to approach the average of an-
other two feature coefficients, which seems too restrictive
to model the relations between different feature groups. To
capture more flexible relations between groups, we propose
an adaptive version of the DFG method, the ADFG method,
with a new regularizer corresponding to ΩGD(β) defined as

ΩAdGD(β) = ΩAdG (β) + ΩAdD (β), (7)

where the adaptive grouping regularizer ΩAdG (·) and the
adaptive discriminating one ΩAdD (·) are defined as

ΩAdG (β) = λ2

d∑
j<k

wjk|βj − βk|,

ΩAdD (β) = λ3

d∑
i=1

d∑
j<k
j,k 6=i

wijk|βi − αijkβj − (1− αijk)βk|,

where wij is a weight based on an initial estimator β̂, i.e.,
wij = |β̂i − β̂j |−γ , with γ as a positive constant, wijk =
wij+wik, and αijk =

wij

wijk
. To achieve good theoretic prop-

erty as we will see later, β̂ is supposed to be the solution of
some estimator with root-n consistency, e.g., the ordinary
least square estimator which is adopted in our implemen-
tation. The larger γ, the more trust the initial estimator β̂
gains. The ADFG method can be viewed as a generalization
of the DFG method since when γ = 0 and λ2 = (d− 2)λ3,
the ADFG method reduces to the DFG method. Moreover, to
make the ADFG method flexible, we use different regular-
ization parameters λ2 and λ3 to weight the grouping and dis-
criminating parts separately. To keep accordance with ΩAdGD,
we also adopt the adaptive version for the `1 norm, which is
denoted by ΩAd`1 (β) = λ1

∑d
i=1 wi|βi| with wi = |β̂i|−γ , in

Eq. (5) as in (Zou 2006).
In order to better understand the regularizer ΩAdGD(β), we

see that for the discriminating part ΩAdD (·), if |βi−αijkβj−
(1−αijk)βk| = 0, and βj and βk are close but still different,
βi is different from βj and βk since αijk ∈ (0, 1). For the
grouping part ΩAdG (·), it is similar to the adaptive generalized
fused lasso regularizer introduced in (Viallon et al. 2013).

Remark 1 ΩAdD (·) can also be viewed as a regularizer to
capture the feature relations by encouraging a linear re-
lationship among any βi, βj , and βk based on the trust
of an initial estimator. Recall that ΩAdG (·) generates fea-
ture groups. Therefore, ΩAdGD(·) can leverage between fea-
ture grouping and maintaining the feature relations.

Remark 2 Figure 2 provides illustrations for different reg-
ularizers in a ball R(β) ≤ 10 for different methods, where
R(·) is the corresponding regularizer. Since the regularizers
in the ncFGS and ncTFGS are similar to that of the OSCAR,
they are omitted. In Figures 2(e)-2(h), similar to (Bondell
and Reich 2008), the optimal solutions are more likely to hit
the sharp points, where sparse solutions appear at the black
tiny-dashed circles, feature fusions occur at the blue dashed
circles, and features keep discriminative at the red solid cir-
cles. We then observe that only the DFG and ADFG methods
have both the grouping and discriminating effects.

(a) GFLasso (b) OSCAR (c) DFG (d) ADFG

(e) GFLasso (f) OSCAR (g) DFG (h) ADFG

Figure 2: Pictorial representations of the regularizers in the ball
R(β) ≤ 10 with β = [β1, β2, β3]T ∈ R3: (a) GFLasso (λ1 = 1,
λ2 = 0.4); (b) OSCAR (λ1 = 1, λ2 = 0.4); (c) DFG (λ1 = 1,
λ2 = 0.4); (d) ADFG (λ1 = 1, λ2 = 0.1, λ3 = 0.2); (e)-(h) the
corresponding projections onto the β1-β2 plane.

Remark 3 In addition, the solution paths for different reg-
ularizers in the orthogonal case can reveal the properties of
the proposed regularizers from another perspective.

Incorporating Graph Information
Similar to (Yang et al. 2012), some a priori information can
be easily incorporated into the proposed DFG and ADFG
methods. For example, when the feature correlations are en-
coded in a given graph, the ΩGD regularizer in DFG can be
adapted to

ΩGD(β) = λ2

∑
(i,j)∈E
(i,k)∈E

max{|βi − βj |, |βi − βk|}, (8)

where a graph G = (V,E) encodes the correlations be-
tween pairs of features into the set of edges E. Similar
formulations can be derived for ΩAdGD and are omitted here.

Optimization Procedure
It is easy to show that the objective functions of both the
DFG and ADFG methods are convex. We propose to solve
the ADFG method using the ADMM, and the same opti-
mization procedure is applicable to the DFG method since
the DFG method is a special case of the ADFG method.
Note that ΩAd`1 (β), ΩAdG (β) and ΩAdD (β) can be reformu-
lated as ΩAd`1 (β) = ‖T1β‖1, ΩAdG (β) = ‖T2β‖1 and

ΩAdD (β) = ‖T3β‖1, where T1 ∈ Rd×d, T2 ∈ R
d(d−1)

2 ×d and



T3 ∈ R
d(d−1)(d−2)

2 ×d are sparse matrices. T1 is a diagonal
matrix with the weights wi’s along the diagonal. In T2, each
row is a 1×d vector with only two non-zero entries wjk and
−wjk at the jth and kth positions respectively. In T3, each
row is a 1 × d vector with only three non-zero entries wijk,
−αijkwijk and (αijk − 1)wijk at the ith, jth and kth po-
sitions respectively. Therefore, the storage and computation
w.r.t. T1, T2 and T3 are very efficient since they are sparse
matrices. The objective function of the ADFG method can
be reformulated as

min
β

1

2
‖y−Xβ‖22 + λ1‖T1β‖1 + λ2‖T2β‖1 + λ3‖T3β‖1. (9)

Since the regularizers in problem (9) are functions of lin-
ear transformations of β, we introduce some new variables
and reformulate problem (9) as

min
β,p,q,r

1

2
‖y −Xβ‖22 + λ1‖p‖1 + λ2‖q‖1 + λ3‖r‖1

s.t. T1β − p = 0, T2β − q = 0, T3β − r = 0.

The augmented Lagrangian is then defined as

Lρ(β,p,q, r,µ,υ,ν) =
1

2
‖y −Xβ‖22 + λ1‖p‖1 + λ2‖q‖1

+ λ3‖r‖1 + µT (T1β − p) + υT (T2β − q) + νT (T3β − r)

+
ρ

2
‖T1β − p‖22 +

ρ

2
‖T2β − q‖22 +

ρ

2
‖T3β − r‖22,

where µ, υ, ν are augmented Lagrangian multipliers. Then
we can update all variables, including β, p, q, r, µ, υ, and
ν, in one iteration as follows.
Update β: In the (k + 1)-th iteration, βk+1 is computed by
minimizing Lρ with other variables fixed:

arg min
β

1

2
‖y −Xβ‖22 + (T1µk + T T2 υk + T T3 νk)Tβ

+
ρ

2
‖T1β − pk‖22 +

ρ

2
‖T2β − qk‖22 +

ρ

2
‖T3β − rk‖22.

(10)

Problem (10) is a quadratic problem and has a closed-form
solution as βk+1 = F−1bk, where

F = XTX + ρ(I + T T1 T1 + T T2 T2 + T T3 T3),

bk = XTy − T1µk − T T2 υ − T T3 ν + ρT1pk + ρT T2 qk + ρT T3 rk.

Update p, q and r: pk+1 can be obtained by solving

arg min
p

ρ

2
‖p− T1βk+1 − 1

ρ
µk‖22 +

λ1

ρ
‖p‖1,

which has a closed-form solution as pk+1 =
Sλ1/ρ(T1βk+1 + 1

ρµ
k), where the soft-thresholding opera-

tor Sλ(·) is defined as Sλ(x) = sign(x) max{|x| − λ, 0}.
Similarly, we have qk+1 = Sλ2/ρ(T2βk+1 + 1

ρυ
k) and

rk+1 = Sλ3/ρ(T3βk+1 + 1
ρν

k).
Update µ, υ and ν: µ, υ and ν can be updated as µk+1 =
µk+ρ(T1βk+1−pk+1), υk+1 = υk+ρ(T2βk+1−qk+1),
and νk+1 = νk + ρ(T3βk+1 − rk+1).

By noting that F−1 can be pre-computed, the whole learn-
ing procedure can be implemented very efficiently.

Theoretical Analysis
In this section, we study the asymptotic behavior of the pro-
posed models as the number of samples n → ∞. Assume
β∗ is the true coefficient vector. Let A = {i : β∗i 6= 0}
(the true pattern of non-zero coefficients) and d0 = |A|,
B = {(i, j) : β∗i 6= 0 and β∗i = β∗j } (the true pattern of
feature groups) and D = {(i, j, k) : β∗i 6= 0, β∗j 6= 0, β∗k 6=
0 and β∗i 6= β∗j , β

∗
i 6= β∗k , β

∗
j 6= β∗k} (the true pattern of

different features). Let s0 be the number of distinct non-
zero coefficients in β∗. Define β∗BD = (β∗i1 , · · · , β

∗
is0

)T ,
which is composed of the s0 distinct non-zero values of β∗,
and let βAdBD = (βAdi1 , · · · , β

Ad
is0

)T be the corresponding es-
timation. Let A1, · · · ,As0 be the sets of indices where in
each set the corresponding coefficients are equivalent. The
learning model is a linear model, i.e., y = Xβ + ε where
ε = (ε1, . . . , εn)T is the noise. Moreover, we make two as-
sumptions that are commonly used in the spare learning lit-
erature (Zou 2006; Viallon et al. 2013):
• A.1 The noises ε1, . . . , εn are i.i.d random variables with

mean 0 and variance σ2;
• A.2 1

nX
TX→ C where C is positive definite.

Let CA be the corresponding d0 × d0 principal submatrix
of C with the indices of rows and columns defined in A.
XBD is a matrix of size n× s0 with the ith column defined
as xBDi =

∑
j∈Ai

xj . Then CBD is defined as CBD =
1
nX

T
BDXBD. The regularization parameters are assumed to

be functions of the sample size n and so they are denoted by
λ
(n)
m (m = 1, 2, 3). For the asymptotic behavior of the DFG

method, we have the following result.

Theorem 1 Let β̂ be the estimator of DFG. If λ(n)m /
√
n →

λ
(0)
m ≥ 0 (m = 1, 2), where λ(0)m is some non-negative con-

stant, then under assumptions A.1 and A.2 we have
√
n(β̂ − β∗)→d arg min

u
V(u),

where V(u) is defined as

V(u) = uTCu− 2uTW + λ
(0)
1

∑
i=1

f(ui, β
∗
i )

+
λ
(0)
2

2
(d− 2)

∑
j<k

f(u′jk, β
′
jk) +

λ
(0)
2

2

∑
i=1

∑
j<k
j,k 6=i

f(u′′ijk, β
′′
ijk).

I(·) is the indicator function, f(x, y) = sign(y)xI(y 6= 0)+
|x|I(y = 0), u′jk = uj − uk, β′jk = β∗j − β∗k , u′′ijk =

(2ui − uj − uk)/2, β′′ijk = (2β∗i − β∗j − β∗k)/2, and W is
assumed to follow a normal distribution N (0, σ2C).

Theorem 1 gives the root-n consistency of DFG. Howev-
er, the following theorem implies that when λ(n)m = O(

√
n)

(m = 1, 2), the support of β∗, i.e. the non-zero elements
in β∗, cannot be recovered by the DFG method with high
probability.

Theorem 2 Let β̂ be the estimator of DFG and Ân = {i :

β̂i 6= 0}. If λ(n)m /
√
n → λ

(0)
m ≥ 0 (m = 1, 2), then under

assumptions A.1 and A.2, we have
lim
n

supP(Ân = A) ≤ c < 1,

where c is a constant depending on the true model.



For the ADFG method, we can prove that with appropri-
ate choices for λ(n)m (m = 1, 2, 3), the estimation β̂Ad ob-
tained from the ADFG method enjoys nice asymptotic ora-
cle properties, which are depicted in the following theorem,
in contrast with the DFG method.

Theorem 3 Let β̂Ad be the estimator of ADFG. Let ÂAdn ,
B̂Adn , and D̂Adn be the corresponding sets obtained from β̂Ad.
If λ(n)m /

√
n → 0 and λ(n)m n(γ−1)/2 → ∞ (m = 1, 2, 3),

then under assumptions A.1 and A.2 we have
• Consistency in feature selection and discriminative fea-

ture grouping: P(ÂAdn = A)→ 1, P(B̂Adn = B)→ 1 and
P(D̂Adn = D)→ 1 as n→∞.

• Asymptotic normality:
√
n(β̂AdBD − β∗BD) →d

N (0, σ2C−1BD).

Theorem 3 shows that the ADFG method has good property
as stated in the asymptotic normality part, and the estimated
sets ÂAdn , B̂Adn and D̂Adn can recover the corresponding true
sets defined in β∗ with high probability approaching 1 when
n goes to infinity.

Experiments
In this section, we conduct empirical evaluation for the
proposed methods by comparing with the Lasso, GFLasso,
OSCAR, and the non-convex extensions of OSCAR, i.e. the
ncFGS and ncTFGS methods in problems (3) and (4).

Synthetic Data
We study two synthetic datasets to compare the performance
of different methods. The two datasets are generated accord-
ing to a linear regression model y = Xβ+ε with the noises
generated as εi ∼ N (0, σ2), where X ∈ Rn×d, β ∈ Rd, and
y ∈ Rn. In the first dataset, n, d, and σ are set to be 100, 40
and 2 respectively. The ground truth for the coefficients is
β∗ = (3, · · · , 3︸ ︷︷ ︸

10(G1)

, 2.8, · · · , 2.8︸ ︷︷ ︸
10(G2)

, 2, · · · , 2︸ ︷︷ ︸
10(G3)

, 0, · · · , 0︸ ︷︷ ︸
10

)T . In this

case, we can see that two feature groups G1 and G2 are sim-
ilar, making them easy to be mis-identified compared with
G3. Each data point corresponding to a row in X is gener-
ated from a normal distribution N (0,S) where the ith di-
agonal element sii of S is set to 1 for all i. The (i, j)th el-
ement of S, sij , is set to 0.9 if i 6= j and β∗i = β∗j , and
otherwise sij = 0.25|β

∗
i−β

∗
j |. The settings of the second

dataset are almost identical to those of the first dataset ex-
cept that β∗ = (2.8, .., 2.8︸ ︷︷ ︸

10(G1)

, 2.6, .., 2.6︸ ︷︷ ︸
10(G2)

, 2.4, .., 2.4︸ ︷︷ ︸
10(G3)

, 0, .., 0︸ ︷︷ ︸
10

)T ,

where groups G1, G2, and G3 are easy to be mis-identified.
We use the mean square error (MSE) to measure the

performance of the estimation β with the MSE defined as
MSE = 1

n (β − β∗)TXTX(β − β∗). To measure the ac-
curacy of feature grouping and group discriminating, we in-
troduce a metric S =

∑K
i=1 Si/K with K as the number of

feature groups and Si defined as

Si =

∑
j 6=k,j,k∈Ii I(βi = βj) +

∑
j 6=k,j∈Ii,k 6∈Ii I(βj 6= βk)

|Ii|(d− 1)
,

where Ii (i = 1, . . . ,K) denotes the set of indices of the ith
feature group with non-zero coefficients in the ground truth.
The numerator in Si consists of two parts, where the first
and second terms represent the recovery of equal and un-
equal coefficients for Ii separately. The denominator is the
total number of possible combinations. Thus, S can measure
the performance of feature grouping and discriminating, and
a larger value for S indicates better performance. For each
dataset, we generate n samples for training, as well as ad-
ditional n samples for testing. Hyperparameters, including
the regularization parameters in all the models, τ in ncT-
FGS, and γ in ADFG, are tuned using an independent val-
idation set with n samples. We use a grid search method
with the resolutions for the λi’s (i = 1, 2, 3) in all methods
as [10−4, 10−3, · · · , 102] and those for γ as [0, 0.1, · · · , 1].
Moreover, the resolution for τ in the ncTFGS method is
[0.05, 0.1, · · · , 5], which is in line with the setting of the
original work (Yang et al. 2012).
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Figure 3: Feature coefficients obtained on the first synthetic data.

Figure 3 shows the feature coefficients obtained by dif-
ferent methods on the first dataset. We see that the ncFGS,
ncTFGS, DFG, and ADFG methods achieve better param-
eter estimation than the Lasso and OSCAR methods. The
ncTFGS method shows clear recovery of group G3 but it
mis-combines G1 and G2 together as one group. In con-
trast, although the coefficients in one group obtained from
the DFG and ADFG methods are not exactly identical which
also occurs in the OSCAR, GFLasso, and ncFGS methods,
they are able to distinguish G1 and G2. Table 1 shows
the average performance of different methods in terms of
MSE and S over 10 simulations. In the first dataset, due to
the existent of a distant group G3 (from G1 and G2), the
ncTFGS achieves the best performance in terms of S, while
in the second problem where all the three groups are sim-
ilar, the DFG and ADFG methods achieve a higher S. In
both datasets, the ADFG has the best performance in terms
of MSE.

Breast Cancer
We conduct experiments on the previously studied breast
cancer data, which contains 8141 genes in 295 tumors
(78 metastatic and 217 non-metastatic). The tasks here



Table 1: Average results over 10 repetitions in terms of mean and
standard deviation on the synthetic datasets.

Dataset (1) (2)
MSE S MSE S

Lasso 1.929(0.591) - 1.853(0.831) -
OSCAR 1.511(0.545) 0.766(0.015) 1.204(0.534) 0.753(0.021)
GFLasso 0.477(0.281) 0.843(0.065) 0.462(0.284) 0.763(0.039)
ncFGS 0.476(0.286) 0.842(0.063) 0.462(0.279) 0.768(0.031)

ncTFGS 0.323(0.191) 0.857(0.064) 0.574(0.280) 0.759(0.110)
DFG 0.399(0.194) 0.781(0.016) 0.267(0.191) 0.770(0.028)

ADFG 0.289(0.152) 0.815(0.058) 0.216(0.149) 0.776(0.042)

Table 2: Results averaged over 10 repetitions for different methods
on Breast Cancer dataset without a priori information.

Acc. (%) Sen. (%) Pec. (%)
Lasso 73.5(5.5) 83.5(5.6) 63.0(8.1)

OSCAR 76.2(1.9) 87.3(5.3) 64.4(6.6)
GFLasso 76.8(2.0) 87.6(4.9) 65.7(5.1)
ncFGS 77.4(1.4) 88.4(5.0) 66.0(5.8)

ncTFGS 78.1(1.9) 87.3(5.3) 68.3(6.2)
DFG 78.5(3.0) 87.3(5.4) 69.5(8.1)

ADFG 81.1(3.8) 89.9(7.1) 71.9(8.5)

are binary classification problems to distinguish between
metastatic and non-metastatic tumors. We use the square
loss for all methods. In this data, the group information are
known a priori, and we have observed from Figure 1(b) that
a large number of similar but different groups exist. In ad-
dition to the feature groups, some a priori information about
the feature correlations between some pairs of features in
terms of a graph is also known. In the following, we con-
duct two experiments. In the first experiment, we do not uti-
lize any prior information, while the second one compares
the variants of OSCAR, ncFGS, ncTFGS, DFG and AD-
FG by incorporating the graph information. The measure-
ments include accuracy (Acc.), sensitivity (Sen.) and speci-
ficity (Pec.) as used in (Yang et al. 2012).

Learning without A Priori Information Similar to (Ja-
cob, Obozinski, and Vert 2009; Zhong and Kwok 2012), we
select the 300 most correlated genes to the outputs as the fea-
ture representation, and alleviate the class imbalance prob-
lem by duplicating the positive samples twice. 50%, 30%,
and 20% of data are randomly chosen for training, validation
and testing, respectively. Table 2 shows the average results
over 10 repetitions. In Table 2, the DFG and ADFG meth-
ods show very competitive performance compared with oth-
er methods in all the three metrics, and the ADFG method
achieves the best performance.

Incorporating Graph Information We investigate the
variants of the DFG and ADFG methods introduced previ-
ously by utilizing the available priori information on fea-
ture correlations in terms of a graph. The data preparation
is identical to that in the previous experiment. The results
are shown in Table 3. Similar to the experiment without a
priori information, the DFG and ADFG methods perform
better than the other methods, and the ADFG method enjoys
the best performance. In addition, the performance of all the

Table 3: Results averaged over 10 repetitions for different methods
on Breast Cancer dataset with the given graph information.

Acc. (%) Sen. (%) Pec. (%)
OSCAR 78.7(4.1) 89.0(3.8) 66.5(6.9)
GFLasso 79.1(4.3) 88.1(4.8) 69.4(5.0)
ncFGS 80.6(4.2) 91.3(3.6) 68.0(6.0)

ncTFGS 81.1(4.0) 90.2(4.1) 70.3(7.6)
DFG 82.3(4.5) 91.5(6.8) 71.4(7.1)

ADFG 82.4(4.0) 91.3(6.1) 71.8(6.4)

Table 4: Test accuracy (%) averaged over 10 repetitions for differ-
ent methods on 20-Newsgroups dataset.

Class pairs (1) (2) (3) (4) (5)
Lasso 75.1(2.9) 81.9(2.0) 74.8(0.9) 78.5(4.0) 81.1(1.6)

OSCAR 75.5(1.8) 82.7(0.9) 73.8(1.7) 78.9(2.1) 83.7(1.9)
GFLasso 76.2(1.5) 83.7(1.5) 74.5(1.9) 77.6(1.8) 83.7(2.0)
ncFGS 75.3(1.6) 82.8(1.2) 72.7(1.5) 77.4(2.2) 82.9(1.3)

ncTFGS 75.3(1.5) 82.8(1.2) 72.8(1.4) 77.7(2.1) 83.6(1.7)
DFG 76.3(2.1) 85.0(2.0) 77.0(1.1) 79.2(3.3) 83.9(2.4)

ADFG 76.4(2.1) 86.0(1.7) 77.1(2.4) 80.4(3.0) 83.8(2.5)

methods improves compared with that in the previous exper-
iment, which implies that the prior information is helpful.

20-Newsgroups
Following (Yang et al. 2012), we use the data from some
pairs of classes in the 20-newsgroups dataset to form binary
classification problems. To make the tasks more challeng-
ing, we select 5 pairs of very similar classes: (1) baseball vs.
hockey; (2) autos vs. motorcycles; (3) mac vs. ibm.pc; (4)
christian vs. religion.misc; (5) guns vs. mideast. Therefore,
in all the settings, the feature groups are more likely to be
similar, posing challenge to identify them. Similar to (Yang
et al. 2012), we first use the ridge regression to select the 300
most important features and all the features are centered and
scaled to unit variance. Then 20%, 40% and 40% of samples
are randomly selected for training, validation, and testing,
respectively. Table 4 reports the average classification accu-
racy over 10 repetitions for all the methods. According to
the results, the performance of the OSCAR method is better
than that of the ncFGS and ncTFGS methods and the DFG
and ADFG methods outperform other methods, which again
verifies the effectiveness of our methods.

Conclusion and Future Work
In this paper, we proposed a novel regularizer together
with its adaptive extension to achieve discriminative feature
grouping. We developed an efficient algorithm and discussed
the asymptotic properties for the proposed models. In fea-
ture grouping, the assumption that the values of coefficients
in a feature group should be exactly identical seems a bit
restricted. In our future work, we will relax this assumption
and learn more flexible feature groups.
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