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Overlapping Decomposition for Gaussian
Graphical Modeling

Guojie Song, Lei Han, and Kunging Xie

Abstract—Correlation based graphical models are developed to detect the dependence relationships among random variables and
provide intuitive explanations for these relationships in complex systems. Most of the existing works focus on learning a single
correlation based graphical model for all the random variables. However, it is difficult to understand and interpret the massive
dependencies of the variables learned from a single graphical model at a global level especially when the graph is large. In order to
provide a clearer understanding for the dependence relationships among a large number of random variables, in this paper, we propose
the problem of estimating an overlapping decomposition for the Gaussian graphical model of a large scale to generate overlapping
sub-graphical models, where strong and meaningful correlations remain in each subgraph with a small scale. Specifically, we propose a
greedy algorithm to achieve the overlapping decomposition for the Gaussian graphical model. A key technique of the algorithm is that
the problem of solving a (k + 1)-node Gaussian graphical model can be approximately reduced to the problem of solving a one-step
vector regularization problem based on a solved k-node Gaussian graphical model with theoretical guarantee. Based on this technique,
a greedy expansion algorithm is proposed to generate the overlapping subgraphs. Moreover, we extend the proposed method to deal
with dynamic graphs where the dependence relationships among random variables vary with the time. We evaluate the proposed
methods on synthetic dataset and a real-life traffic dataset, and the experimental results show the superiority of the proposed methods.

Index Terms—Gaussian graphical model, correlation, overlapping decomposition, heterogeneity, dynamic

1 INTRODUCTION

ORRELATION based graphical models are established to

meaningfully characterize the dependence or statistical
relationships that exist among variables of interest and
quantify them. The problem of characterizing the depen-
dence relationships between variables in complex systems,
such as economics, biological systems, traffic systems, cli-
mate change, etc., is important and fundamental. For exam-
ple, economists want to know whether burning natural gas is
a related factor with global warming.

The Gaussian graphical model (GGM) [1], which learns
the dependence relationships among variables through the
inverse of their covariance, is one of the most promising cor-
relation based modeling methods, since the relationships
revealed via the inverse covariance are important signals to
tell which variables may interact with each other and find
the dependence relationships existed among the variables.
The Gaussian graphical model has been successfully
employed in many applications, such as mining the interac-
tions of climate attributes [2], gene regulatory network dis-
covery [3], etc. In addition, several correlation based models
on temporal evolving graphs have been proposed with
applications in cross-species gene expression analysis [4],
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oil-production equipment stage capture [5] and climate
research [6] as well.

The aforementioned methods construct a single graphical
model (SGM) to capture all the dependence relationships
among variables, treating all the variables together. These
models are effective for understanding the relations among
a small number of variables (usually in the order of tens as
shown in their applications). However, when large number
of variables are considered especially with only small num-
ber of available observations, interpreting a single graphical
model becomes intractable. As a matter of fact, it has been
shown that a correlation based analytical model with only
20 variables can be overwhelming and difficult to interpret
at a global level [7], [8]. Worse still, it is much more chal-
lenging to construct and understand the complicated
dependence relationships using graphical models for a rela-
tively large graph, e.g., even with hundreds of variables,
although many applications need to deal with large graphs
with heterogenous and complicated relationships. For
instance, a highway network in traffic systems often con-
tains hundreds or thousands of variables, whose observa-
tions are counts of passing vehicles collected by sensors. In
such traffic networks, complicated dependencies exist
among the vehicle counts that the vehicles passed through
one specific location may be from some other locations.

Therefore, it is essential to develop techniques to dis-
cover and understand such dependence relationships in a
large network. To cope with the challenging problem, we
propose to decompose a large graphical model into multiple
overlapped sub-graphical models, where strong interac-
tions exist in each subgraph with a small scale. For decom-
posing a graphical model, it is important to consider both
the heterogeneity and homogeneity, where heterogeneity
means the local correlations and homogeneity refers to the
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overlaps between sub-graphical models. For example in
traffic systems, some crucial traffic nodes may highly corre-
late with several different local regions, and thus these
important nodes should be considered as overlap (homoge-
neity) by these local regions; meanwhile, we also need to
find the interactions within a local region (heterogeneity).

Unfortunately, decomposing a graphical model is NP-
hard even if overlaps are not allowed [7]. When we allow
overlaps, the decomposition problem becomes more chal-
lenging because the search space becomes larger, which is
due to more combinations of sub-graphical structures than
those in the non-overlapping case.

In this paper, we address the challenging problem of esti-
mating an overlapping decomposition for Gaussian graphi-
cal models of a large scale. We propose a novel
approximation algorithm with theoretical guarantee, which
is based on a local subgraph expansion strategy. The motiva-
tion begins by first decomposing the original problem of the
single Gaussian graphical model, i.e., the optimization prob-
lem of the ¢; penalized negative log-likelihood of the obser-
vations [9], [10], into sub-problems. Then we propose a
greedy algorithm that starts with the initial small subgraphs
and incrementally computes the new approximated sub-
problem for each subgraph when a new node is involved.

One key technique in the decomposition of the original
objective function of the single Gaussian graphical model is
that the problem of solving a (k + 1)-node Gaussian graphi-
cal model is approximated to the problem of solving a one-
step vector regularization problem based on a solved
k-node graphical model, referred to the additive expanding
property, while the results obtained from the approxima-
tion step also enjoys good asymptotic properties. We pro-
vide detailed theoretical analysis for this key technique,
which guarantees the feasibility of the overlapping decom-
position method. Based on the above technique, we then
propose a greedy expansion algorithm for generating the
overlapping sub-graphical models.

The overlapping decomposition technique is so far devel-
oped for random variables from static graphs. However, in
many real world applications, the graph evolves over time.
For example, the dependence relationships among the vehi-
cle flows in a highway network of traffic systems change
frequently during one day, leading to the alternation of
peak and leisure hours in the traffic. To address this
dynamic problem, we then extend the proposed method to
deal with sequence of graphs, where the dependence rela-
tionships among random variables vary over time. We
assume the variable covariance changes smoothly over
time, and then apply a weighted covariance matrix for the
overlapping decomposition algorithm to capture the
changes of the dependence relationships smoothly.

We evaluate the proposed method with two sets of
experiments: (1) we empirically verify the properties of the
proposed overlapping decomposition method on synthetic
networks, and compare with the single graphical model [9]
and the non-overlapping decomposition method (which is
a special case of the proposed overlapping decomposition
method). The experimental results demonstrate the advan-
tages of our techniques; (2) we evaluate the proposed
techniques on real-life traffic data by learning the depen-
dence relationships among traffic observation points (e.g.,
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on-ramps or off-ramps) and detecting the traffic regularity
in large traffic networks. Both static and dynamic settings
are evaluated in this traffic dataset.

In summary, our contributions are five-fold:

1) To our knowledge, our work is the first one that
decomposes the single Gaussian graphical model
into sub-graphical models according to overlapping
subgraphs for both static and dynamic settings.

2) We propose an additive expanding technique to
modify the original problem for the single Gaussian
graphical model to one-step vector regularization
sub-problems, and demonstrate its asymptotic prop-
erties with detailed theoretical analysis.

3) Wepropose a constrained greedy subgraph expansion
algorithm for generating the overlapping subgraphs
as well as learning the dependence relationships
within each subgraph simultaneously.

4) We extend the proposed method to deal with
dynamic graphs, where the dependence relation-
ships among random variables change over time.

5) We evaluate our method on both synthetic and real-
life traffic datasets. Experimental results show the
effectiveness and superiority of our overlapping
decomposition technique.

This paper is an improved version of the conference
paper [11]. The rest of the contents is organized as follows.
In Section 2, we briefly review closely related works.
Section 3 presents the preliminaries and the problem state-
ment. In Section 4, we present the proposed method. In
Section 5, we introduce how to extend the proposed method
to deal with dynamic graphs. Experimental studies are
reported in Section 6. We conclude this paper and present
future directions in Section 7.

2 RELATED WORK

Most of the existing works on correlation based graphical
models build a single graphical model. This renders them
impractical to interpret and understand relatively large
graphs. To cope with larger set of random variables, Ruan
et al. [7] propose to cluster the variables into groups such
that strong dependence relations appear only among the
variables within a group while the relations between inter-
group variables are ignored. The clustering problem is for-
mulated as a regression coefficient sparsification problem
for the decomposition of a graphical model. However, this
approach only considers non-overlapping decompositions
while ignoring the overlap between subgraphs, which, how-
ever, exists in many real-world applications. Moreover, the
approach [7] is based on the Vector Autoregressive model, a
type of temporal graphical model, rather than Gaussian
graphical model as we consider in this work. A recent work
[12] proposes to decompose a sparse Gaussian graphical
model into disjoint connected components according to
some threshold, while the solution obtained from the sub-
graphs is shown to be equivalent to the solution of the origi-
nal problem. However, the structures of the subgraphs
directly relay on the threshold parameter, and once at least
one edge exists between two subgraphs under some thresh-
old, the two subgraphs are indecomposable and have to be
treated as an entire one. In other words, overlap is not
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allowed among the subgraphs, otherwise the components
with overlap should be considered as an entire component.
Therefore, this approach is less applicable in real applica-
tions, since it is hard to find a threshold parameter to exactly
decompose the graph into the desired disjoint components
while preserving the global optimality. Another work [13]
also proposes a local clustering algorithm for massive
graphs, however, the nodes considered in their graphs are
not random variables and their model does not aim to learn
the dependence relationships among the variables.

For the Gaussian graphical model with ¢; penalized
negative log-likelihood as the objective function, some effi-
cient algorithms have also been proposed to learn large
scale graphs recently [14], [15], [16], [17], [18]. In these
works, even a single graph with millions of variables is
tractable to be solved, and their algorithms are guaranteed
to converge to the optimal solution of the ¢, penalized
negative log-likelihood minimization problem. However,
all these works focus on efficiently solving the original sin-
gle Gaussian graphical model, while none of them tries to
interpret and understand the obtained dependence rela-
tionships in the graph. As a matter of fact, it is impossible
to understand a single graph at that scale with millions of
variables for domain experts, and even only tens of varia-
bles are difficult to interpret at a global level [7], [8].
Instead of solving the single Gaussian graphical model, we
propose to decompose it into small overlapping compo-
nents, and interpret the entire graph with strong interacted
variables existed in each subgraph.

Our work is closely related to the joint estimation meth-
ods for multiple graphical models that share common
structures [19], [20]. The joint estimation methods [19], [20]
are proposed to learn multiple graphical models on the
data from different categories but with the same set of fea-
tures (variables), considering both the underlying homoge-
neity and heterogeneity of networks. They estimate
multiple graphical models for different categories of the
features, but not decomposing the features themselves. We
proceed to use the example application scenario in [19] to
illustrate these methods. Consider a set of webpages col-
lected from computer science departments of universities,
and we want to find the correlations between selected key-
words (e.g., ‘book’, ‘model’, ‘problem’, etc.) appearing in
the collection. These keywords can be treated as features,
and appear in webpages of different categories, such as
‘student’, ‘faculty’, ‘project’, etc. These features may dis-
play different dependence structures for different catego-
ries while sharing some common correlations across
categories. The joint estimation methods cannot be applied
to solve our problem, and they cannot be employed to dis-
cover the complicated dependence relationships in large
feature networks. First, these methods do not consider the
decomposition on features of a large graph. Second, these
methods are developed for graphs with a small number of
features (in the order of tens).

Our proposed approach is also related to detecting
overlapping community structures [21]. Community
structure detection aims to group similar nodes together
based on known distance measurements or correlations of
nodes themselves. In contrast, in our problem we aim to
uncover the dependence relationships among the nodes,
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furthermore find subgraphs by the measurement that
based on these relations but not the known properties of
nodes themselves. Thus, our problem is essentially differ-
ent from community structure detection.

3 PROBLEM SETUP

3.1 Preliminary: Gaussian Graphical Model

As a member of the correlation based graphical model,
Gaussian graphical model assumes the joint distribution of
the variables to be Gaussian. In GGM, the dependence
structure is determined from the covariance matrix of the
variables, and a natural way to evaluate the dependence
relationships is to estimate the inverse of the covariance
matrix [1], [22], [23]. Consider p random variables
X = (x1,...,x,), and each variable z; has n observations
1...,2"", where we usually have n > p. Without
loss of generality, we assume X follows a multivariate
Gaussian distribution N(u,3), where the mean vector u is
p-dimensional and each element in covariance matrix 2 is
the expected value ;; = E[(X; — u;)(X; — i;)]. The preci-
sion matrix () is the inverse of the covariance matrix, i.e.,

z; = (v}

Q=3"", which reveals the dependence relationships
among the variables. There exists a dependence relationship
between variables x; and «; iff );; # 0 [1], [22]. Therefore,
the key problem is to calculate (). The estimation of {) can
be obtained by minimizing the ¢; penalized negative log-
likelihood criterion [9], [10],

Q) = argmin

i tr(2Q) —log|Q + A Z 16:51, 1)

i#j

where 0;; is the (i, j)th element in €); () > 0 means that () is

positive semi-definite (PSD) matrix; S is the sample covari-
ance matrix obtained from the input X; | - | and ¢r(-) are the
determinant and the trace operators in matrix calculus,

respectively; A is a tuning parameter. The term tr(iﬂ) -
log|Q)| of Eq. (1) corresponds to the negative log-likelihood
of the observations of a Gaussian graphical model. The term
A2 10i] is called a ¢, penalty, which is to shrink some of

the off-diagonal elements in Q to zero. The tuning parame-

ter A controls the sparsity of Q. This minimization problem
can be efficiently solved by the algorithms proposed in [9],
[10], [14], [15], [16], [17], [18].

3.2 Problem Definition

Problem Definition. Given p random variables X = (x1,...,

x,), where p is large and each variable x; has n observations,

. T .
ie x; = (z},...,2")", we aim to learn the dependence rela-

tionships among these variables by decomposing the random
variables into overlapping subsets.

In other words, we aim to encode the structure of X with
an undirected graph G = (V,E), where each node v in
V ={vi,...,v,} corresponds to a variable in X. The edge
set I indicates the dependence relations between any two
variables. More precisely, if z; is correlated to z;, then edge
e;j is included in E. Thus, our objective is to obtain E. As
introduced in Section 3.1, £ can be constructed by
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estimating the precision matrix ) of X. We add an edge

Instead of creating a single Gaussian graphical model
for G directly, we propose to construct K Gaussian sub-
graphical models with overlaps to discover the dependence
relationships among variables with enhanced interpretable
ability. Each subgraph is denoted as g; = (SV;,SE;),1 <
i < K. The dependence relationships reflected in F,
E = |J,SE,, are the output.

The challenge here is to generate the K sub-graphical
models and allow some variables exist in more than one
sub-graphical models, i.e. overlap exists, and then estimate
Q; for each SE;. To achieve this, we propose a novel algo-
rithm for solving the overlapping decomposition problem,
where a core step called local subgraph expansion is used. Our
algorithm adopts a bottom-up strategy that expands the ini-
tial subgraphs by adding selected nodes gradually until the
structure of overlapping subgraphs will become stable.

During this process, a key operation is to choose whether
to include a new node in a subgraph. This operation is
invoked many times, and calls for efficient techniques. Spe-
cifically, assume that there is a k-node subgraph whose
inner dependence relationships have been detected, then
we want to know whether a node v, should be added to
it. A straightforward method is creating a new Gaussian
graphical model on all the £+ 1 nodes. However, this
straightforward method ignores the known dependence
relationships in the k-node subgraph and is a waste of com-
putations. Thus, a natural question is whether we can reuse
the known dependence relationships in a subgraph to detect
the relationship between a new node and the subgraph. In
the next section, we present the proposed approximation
method with theoretical guarantees for this key operation,
and then develop a greedy algorithm to construct the
subgraphs.

4 THE PROPOSED METHOD

In this section, we propose two techniques. The first tech-
nique is used to check whether a new variable (node)
should be included in a subgraph. This technique modifies
the penalized log-likelihood criterion in Eq. (1) so that it can
be incrementally expanded to accommodate new nodes. We
call it additive penalized log-likelihood expansion (APLE).
In Section 4.2, we discuss the asymptotic properties for the
APLE technique, which also motivates the necessity to
decompose a large graphical model into sub-graphical mod-
els from a theoretical view.

The second technique is a local greedy approach pre-
sented in Section 4.3. We define a fitness function based on
the APLE approach. Moreover, taking into account some
structure constraints on the subgraphs, we develop the Con-
straint Greedy Subgraph Expansion (CGSE) algorithm,
which can achieve the local subgraph expansion process.

4.1 Additive Penalized Log-Likelihood Expansion

Assume that the problem in Eq. (1) for a k-node graph has
already been solved, and now a new variable z;,; is added
into the solved k-node graph. Instead of solving the original
single Gaussian graphical model in Eq. (1) for a (k + 1)-node
graph, we propose to utilize the solution of the k-node graph
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to construct a new solution for the (k + 1)-node graph, since
the dependence relationships existed in the k-node graph
should almost remain stable after incorporating a new node
for a static graph. By denoting the solution of the k-node

graph as 0", we propose to construct

X O,k
Q(]»,-Fl) _ QT 0 7 (2)
0" Opp

where 6 is a k£ x 1 vector that reveals the dependence rela-
tionship between x4, and {z1,...,2;} which we have to
learn. In order to detect the relationship among Q", 6 and
Or+1, we have to plug Eq. (2) into the original problem in
Eq. (D).

Denote the penalized negatlve log—hkehhood criterion for
a k-node graph in Eq. (1) as 2(Q™). Now for a (k + 1)-node
graph, we have

R k+1
tr(EHIQED) ogla® D]+ A3 6y,
i#j

E(Q(k+l)) _

where Q%+ has the form in Eq. (2). For notional simplicity,
we introduce three symbols to denote the items:

Ifkﬂ) _ tr(i(k+l)ﬂ(k-+l))7 I(k+1 ‘Q(k+1)|
k+1
k+1 - Z 10,51-
i#]

We then unfold S**! and Q** into block matrices and get

[ tv-([%(;) AE . [Q(T’“) 6 D
£ Erm1 0" O
— ( [ sHQ® e Sy +6p 1€ :| )
gab 4 E107 10+ 1O

= trEPOW) + tr(207) + 870 + Epi16pi
=1 4+ 2870 4 510441,

ab
0" Opn
= log(|QW| - 6.1 — 67 (QF) o)
= 1" +10g (651 — 67 (1) '),

I(k+1) —1o

[

1 = AZ 16,51 = I + 27 0],
i#j

where (€,€;41) is the sample covariance vector between .,

, )11}, and Ifm + Iék) + Iém defines €(ﬁ<k>). The
k)
2

and {z1,...

derivation of
Finally, we can get

is obtained by the Leibniz formula.
Q™Y = QW) + 2870 + 81011
—log(0411 — 6" (M) Vo) +2x6)l,. @

Note that in the problem of the (k + 1)-node graph, aW s
known as a constant, therefore, we only have to solve the
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following problem for (6, 6x+1):

(0 9k+1) = arg 1 min 2870 + &10p1
0.0141 (4)
—1og (611 — 67 (QM)7'0) + 200 6]],.

In problem (4), it potentially requires that 6. >
67 (Q") ™19 > 0 to make QY PSD since O* is assumed to
be a solved PSD matrix. Similarly, we use £(6, 6. 1) to repre-
sent the objective in problem (4). Now, we have

QDY = QW) 4 £(6, 011). )

So far, it is understandable that to obtain Q*Y with the for-

mulation in Eq. (2) based on a known ﬁ(k), we just need to
solve £(6,0;.1) of problem (5) for an additional vector opti-
mization problem. We next proceed to explorer the proper-
ties of the vector regularization problem (5), which is
summarized in the following theorem.

Theorem 1. With given PSD ﬁ<k>, problem (4) is convex w.r.t. 0,
0111 and (0, 0x.41), respectively.

Proof. Let A = (V)" The convexity of problem (4) can be
achieved by directly calculating the Hessian matrix H of
the objective [(0, Oy.+1):

21 i1 2611 +67A0)A —240
H—| % 9| _ | 0 -0740)7 (011 — 67 46)
= | 2% 32_21 - 2074 1 :
Wr+100 867 Op1 — 07407 (05, — 07 A0)°
Since O is a given PSD matrix, and so is 4, it is easy to

verify that (6, 0k+1) is convex wr t. 6 and 0;,; respec-
L is PSD and

tively, because is positive. Now, we
1~+1

have to show H is PSD matrix to see the joint convexity
of 1(0,6;.41). For any vector [a; ] € R*'!, where a € R¥,

we have
T T T 2
[ mH{a] :2(9k+1—9 AB)a! Aa + (20" Aa — B) _—
B (Ot — 67 A0)? -
Therefore, H is PSD matrix. m|

From Theorem 1, we know that problem (4) is convex
w.r.t. 6, 0541 and (0,0;.1) respectively, and therefore this
problem can be solved efficiently using the generalized
¢, solver in [24]. To be concise in the following analysis,
we denote 0 = (0, 0511).

The solution constructed from Eq. (2) is an approxima-
tion of the optimal solution of the original Gaussian graphi-
cal model defined in Eq. (1) because we restrict the form of

QD in Eq. (2). However, we show in the next section that
the solution in Eq. (2) can be asymptotically consistent with
the true precision matrix when the number of samples n is
sufficiently large. Such theoretical results provide important
guarantee for the feasibility of the APLE technique.

4.2 Asymptotic Analysis of APLE

In this part, we discuss the asymptot1c property of the APLE
technique, which guarantees that Q! can be asymptoti-
cally consistent with the true precision matrix by choosing
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an appropriate Ay when n is sufficiently large. A detailed
asymptotic analysis of Eq. (1) has been discussed in [25].
Inspired by it, we establish the analysis to our APLE
approach as follows.

Let the true precision matrix be )y, and let the true

covariance matrix be 2y (Qy = (Z0)~ 1 for any correspond-
ing size, as well as true precision vector 6, = (6,6} ) and
true covariance vector & = (eo,e),,) for size k+ 1. We
make the following assumptions according to [25]:

e Al: There exists a constant n such that 0 < (p,,LaI(Q(()k') )

<pmax(9(()k+1)) <1, where ¢,,,.(-) denotes the maxi-
mum eigenvalue;

e A2: There exist constants o; and o9 such that
o1 §§k+1 < oy will guarantee QU+ positive semi-
definite;

o A3:0Min problem (4) is a root-n consistent solution
[25] for the k-node graph.

Now we have the following theorem.

Theorem 2. Let & = (£,8,.11) and let 6 = (8,0,.11) be the optimal

solution for problem (4). Under A1-A3, if Ny = C| w,
where Cy is a positive constant, then
o k+1log(k+1
16— 8ll, = 0p< ()ng()) ®

where Op(-) is the order in probability.

Proof. Let G(Ag) = £(6) + Ag) — £(6y). Assume that there
exists a bounded convex set

G = {4y [|8glly < My},

where M is a positive constant and

- (k+ Dlog(k+1) 0

. (n — o00).

Note that G(A) is a convex function, if we demon-
strate that G is positive everywhere on the boundary 9G
(|Agl|y = Mr,), then G has a minimum inside G. Actually,

G(dg) = £(B0 + Ag) — £(By) = 2" Ag + Epy1 g,

- (log (92*+1 — (65 + A0) (M) (0 + Ae))

flog(G(,iH o7 (W) 00))

+2X([160 + Al — [160ll,)
For the subtraction of the logarithm terms in Eq. (7),
denote f(6) = log(6y.1 — 67(Q2")7'0). Because f(6) =
IékH) - I§k>, we have

f(80 + Ag) — f(6o)
_ (10g|Q(()k+l) +A(k+1)| . log\Q((JkH)D
— (logmék) + A<k)| - log|Qék)|).

As has been proved by [25], for any () that satisfies Al,
we have
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log|Q + A] — log|Q)|

=tr(2A) — AT {/1 (1—0)(Q +vA)™!

® (Q+ uA)fldv} A,
0

where

F=A" Ul (1=)(Q+vA) ' (@Q+ uA)*ldv}K

Thus we have

f(60 + Ag) — f(60)
({04050 i (300)) - (st _ )

_ (F(k'ﬂ)

=2ej Mg + €)1, — Fk),

Then we can get
G(Ag) = E" — &) Ag + (BT — ) Ag + (FFHY) —

6ol[1)-

F(k))
+2X0([160 + Agl|; —

For each item in G(Aj), we have the following bound-
aries

log(k +1)

Bl:|(E" —&)agl < ¢ (vl

k+ Dlog(k+1
<c %HAQHQ,

log k:log k

146l < Cy

(& —<f)ml < 40l

. . 1
B2 P — 0 > o (AR — AW ) > 2 gl

B3 o([180 + Aolly — 1180ll) < NollAoll; < AaVE[Aoll,

< AoV (k4 1)1 4],

where the inequalities in B1 are boundaries from [25],
and B3 can be obtained by the mean inequalities. Com-
bine all the above items and finally we can get

1 k+ Dlog(k+1
Glle) 2 75 gl — 2y B D)

=200/ (k 4+ 1[4l
S 1 201/ o BT
= | 45ll3 i -

1451]

T,
Take Ay = Cpy /)
1 2C) +2C
6(a9) 2 Il (55 - 2920

for M sulfficiently large we can get G(4;) > 0. ]
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According to the theorems in [19], [25], a root-n consis-
tent solution Q)

~ k .)logk
Hmk)_ng@HF—op( (ot ou)logh °g>, ®

for the k-node graph satisfies

n

where sy, is the number of non-zero off-diagonal elements in
. For Q**Y, we have

0% — Q|5 < 189 — ofP [+ 2/jp - &

Combine with our Theorem 2 and note that 0 < s;,; —
s < 2k, then it can be found that

[

o, ((k + ST;Z)log k) Lo (2(k + log(k + 1))

n

n

o ((k +1+ spen)log(k + 1)) |

which is in line with the asymptotic property of the optimal
solution obtained from the original problem (1) for the
(k+ 1)-node graph [19], [25]. Such results verifies that the
approximated solution constructed from the APLE tech-
nique also enjoys good asymptotic properties.

It is worth mentioning that both Eq. (8) and our
Theorem 2 are in line with the motivation of the decomposi-
tion on large scale graphical model. Note that both of them
show that when the number of variables £ is relatively large
or exceeds the number of observations n of each variable,
the error on the estimation will increase dramatically and
the asymptotic properties may not hold any more since the
assumptions that a sufficiently large n is not satisfied. This
suggests that, in addition to the interpretable ability, when
we consider only a single graphical model on a large net-
work, the result will be inaccurate especially when there are
not enough observations to support such a large graphical
model. An example is that traffic systems often contain hun-
dreds of ramps (variables), and the number of the observa-
tions for each ramp is limited by the sampling quantity. The
periodicity of traffic behaviors is often measured by days.
Thus, if we want to know the dependence relationships
between observations at a specific time period in a day, we
can just get one value for each ramp one day. Therefore, the
decomposition of a large graphical model is necessary.

One disadvantage of solving problem (4) is that it

requires calculating the inverse of Q™. As mentioned previ-
ously, problem (4) is involved many times to achieve the
local subgraph expansion, and it has to be solved efficiently.
To accelerate the procedure, we propose to substitute

Q") with the sample covariance S® where problem (4)
becomes

(6.0141) = arg mmin 2870+ 8101 — log (B — "3 M)
k+1
+ 2216
©)

The advantage of solving problem (9) instead of problem
(4) is that: (1) 3 can be obtained directly from the input
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and no matrix inversion needs to be calculated; (2) when
n is sufficiently large, the optimal Q) is asymptotically
consistent with the true precision matrix Qf@, and the

sample covariance matrix P E(()k) = (Q[(Jk'))_l, then the
properties in Theorem 2 can still hold. Therefore, in our
implementations, we will solve problem (9) instead of
problem (4).

4.3 Constraint Greedy Subgraph Expansion

We present the algorithm for the local subgraph expansion
process based on our APLE approach. We consider some
constraints corresponding to the structures of the sub-
graphs, and apply them to the local subgraph expansion pro-
cess in this section.

Constraints. When a new node (variable) z,.,, joins in a
solved k-node subgraph g to do expansion, based on APLE
we can obtain a new dependence vector between ., and g,
ie. E,mw = APLE(g, Tnew, No) € R* (we do not consider §k+1).
Let % ={i :@ # 0,1 < i < k}, we define the fitness as

i ) _ _—yo |E/§|
itness(Opew) = € 7
where o is the number of subgraphs to which node v,,, has
been mapped, and thus y controls the degree of overlaps,
which can be regarded as a constraint. With y, we have that
the correlation contributions of wv,., to other subgraphs
reduce as the number of subgraphs to which v,., has
already been mapped increases.

Because the fitness in Eq. (10) is always nonnegative, a
threshold ey should be given as the minimum accepted fit-
ness, which is actually a constraint on the size of each sub-
graph. After each iteration of the expansion, we check
whether there are near-duplicated subgraphs based on the
following equation:

(10)

1n

{|Swmsvj\ |Swmsvj|}
BRG] ”

where SV, is the set of nodes in subgraph g; and ¢, is the
combination threshold. We combine subgraphs g; and g;
into a new subgraph if the above equation is satisfied. Here
€, balances the sizes of overlaps.

Adaption of X\g. It has been mentioned above that as the
subgraph expands, Ay has to be adapted to make APLE sat-
isfy Theorem 2. According to Theorem 2, we know that

/\ék) =) w, and thus when k expands to £+ 1, we

have
log(k + 2 x
7( n ) =/log;  (k+ 2))\(9”.

In the following algorithm we will update )y based on
Eq. (12).

The proposed Constraint Greedy Subgraph Expansion
algorithm is then outlined in Algorithm 1.

Algorithm explanation. Without loss of generality, S can be
selected randomly as long as the seeds in S are disjoint with
each other. Lines 3-5 initialize the tuning parameter )\, for
each seed. Lines 7-15 give one step expansion for each
subgraph. We expand all the subgraphs together, which can

A = ¢y (12)
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achieve a balance for the size of each subgraph. Lines 16-22
check if two subgraphs should be combined. In the expan-
sion step 8, the order of the unvisited nodes that will be
added may influence the structure of the subgraphs. For
example, given a subgraph with 10 nodes, assume that there
exist two new nodes that each of the two connects nine
nodes in the subgraph. Then if we select ¢, = 0.9, the first
considered new node will always be incorporated into the
subgraph while the second one will be rejected. In traffic
analysis, the order of the nodes can be obtained according
to some domain knowledge, e.g. the spatial locations of the
nodes. If no prior information is available, the order of the
nodes can be arranged randomly.

Complexity analysis. Assume that the final average size of
the subgraphs is R and denote the time of the solver to solve
the APLE step 11 as L(R), lines 7-15 can be computed in
O(K - L(R)) time. Lines 16-22 take at most O(K?p) time with
auxiliary O(p) space. The number of iteration of line 6
reaches p at most. Thus our CGSE algorithm takes
O(K*p? + Kp - L(R)) time in the worst case. In this paper,
L(R) is the complexity of the ¢, regularization solver in [24],
which is logarithmic complexity with R [24].

Algorithm 1. CGSE Algorithm

Input: (1) p random variables X = {z1,...,z,} where z; con-
tains n observations; (2) K initial seeds S = {51, ..., Sx} where
|S1] = =|5k};
Parameters: (1) fitness threshold ¢; (2) combination threshold
€o; (3) initial tuning parameter \;
Output: Dependence relationship among p variables and the
overlapping subgraphs;
1. g=5;
K=K,
fori=1to K do
Ai = Ao;
end for
repeat
fori=1to K do
Find an unvisited variable z; from the nodes that are
not in subgraph g;;

9: k= |gil;
10: Xi = +/log(k+ 1)\;
11: Onew = APLE(g;, xj, \i);
12: if Fitness(0,ew) > € then
13: Add z; into g;;
14: end if
15: end for
16: for each g; in g do
17 foreach g;in g (j # i) do
18: if |g; N gjl/1gi| > €, orlgi N g;|/|gj] > €, then
19: Combine g; into g;;
20: end if
21: end for
22: end for

23: K =|g|;
24:  until Each subgraph stays unchangeable
25:  Output g;

5 DEAL WITH DYNAMIC GRAPHS

In this section, we extend the proposed overlapping decom-
position technique to deal with sequence of graphs, where
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the dependence relationships among the random variables
in the graph change over time. A number of works have
been proposed to learn dynamic structures of the graphs
over time [26], [2], [27], [28], [29], [30], however, none of
them considers to learn the dynamic structures and decom-
poses the graph into overlapping subgraphs simultaneously
as we do. In this paper, we focus on comparing the
extended dynamic overlapping decomposition technique
with our static counterpart. The comparison between the
proposed dynamic method and the previous works
concerned with dynamic graphs will be considered in our
further work.

Assume the graph evolves over time ¢t =1,..., T, then at
any time ¢, the target of a single graphical model is to esti-
mate ()(t) by minimizing the corresponding penalized neg-
ative log-likelihood criterion [26], [31]:

Qt) = i S(1)Q) — logQ
(t) = argmin  tr(X(t)Q) —log| [+ 2> 163,

i#

(13)

where g(t) is the kernel estimator of the sample covariance
at time ¢ estimated from input X (¢):

_ Zt’ wt’tX(t,)X(t/)T
Zz’ Wyt ’

which is an averaged weighted covariance matrix. The
weights wy, is defined as wy;, = K (@), where ¢’ takes the
value from some adjacent time points of time ¢, K(-) is a
symmetric nonnegative kernel function, and h is a band-
width parameter that controls the smoothness over time of
the estimated covariance matrix. Here, we use the Gaussian

kernel K (x) = exp(—a?).

S(t) (14)

Algorithm 2. Dynamic Overlapping Decomposition
Procedure

Input: Random variables { X (1),..., X(T)} over time 1,...,T;
Parameters: Bandwidth parameter h;

Output: Dependence relationships among the variables and the
overlapping subgraphs for each graph at timet =1,...,7;

1. fort=1toT do

2 Calculate X(t) according to Eq. (14);

3 Learn the graph at time ¢ by CGSE Algorithm;
4:  end for

5:  Output the subgraphs at time¢ =1,...,T;

Based on the overlapping decomposition technique
introduced previously, we propose to estimate Q(t)(kH) by
solving the following problem:

min
(0(t) Or+1(1))

—log (B () — 6(t)" - 2N () - 0(1)) + 22a]10(1)]].

28(1)1 (1) + a1 ()61 (1)
(15)

where (6(t),0;:1(t)) is defined in Eq. (2) according to
Q)" and (8(t),E41(t)) is the kernel estimator of the
sample covariance vector between xzy(f) and
{z1(t),...,z+1(t)}, which can be obtained directly from
Eq. (14). Then the dynamic overlapping decomposition pro-
cedure is stated in Algorithm 2. The time complexity of
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Algorithm 2 is T' times of that of the CGSE algorithm for
one static graph.

6 EXPERIMENTAL STUDY

We evaluate the proposed Overlapping Decomposition
method for Gaussian Graphical Model (ODGM). We com-
pare with the Single Graphical Model, which is solved by
the graphical lasso [9]. To further study the advantage of
the overlapping decomposition, we adapt the proposed
CGSE algorithm to support the Non-Overlapping Decom-
position for Gaussian Graphical Model (NODGM) by set-
ting y = +o0 in Eq. (10) to forbid overlaps.

We report results on synthetic datasets in Section 6.1. In
Section 6.2, we report the performance study on real-life
traffic dataset, and show the usefulness of the results for
traffic analysis.

6.1 Synthetic Data
6.1.1 Setting

Since we focus on graphical models of a relatively large
scale, we generate a set of networks whose number of
nodes, p, ranges from 100 to 900. Note that previous correla-
tion based analytical models normally use networks with
tens of nodes. We set the number of observations n = 800
for all the settings. We follow the approach [20] to generate
the synthetic data. To simulate the heterogeneity in large
networks, we generate local centered network by K local
Erdos-Rényi random graphs {g1, g2, ..., 9k}, gi = (SVi, SE;),
and for homogeneity, we add edges between any g; and g;
randomly. Specifically, we generate the data as follows.

1)  We generate K Erdos-Rényi graphs, each with a ran-
dom size in [20, 80], such that ZZK |SVi| = p. Let Eeross
be the set of cross links between the K graphs, and
let Ejnuer = UK SE; be the set of total inner links. Let
P = |Ecross|/| Einner| be a factor to control the homoge-
neity. We randomly add p|Ejn.r| cross edges.
Finally, we can get a network G = (V,E), where
V= U,K‘S"/l and £ = Einner U Eross-

2) Based on the above network, we create a covariance
matrix by following [32]. Define a p x p matrix A as

1, i =],
0, else,

where U(-) represents uniform distribution. We scale
the diagonal elements to ensure positive definiteness
and average the matrix with its transpose to get a
symmetric A. Then the covariance matrix %, is calcu-
lated as

3) We generate p-dimensional samples from A (0, 3).

We define Precision, Recall and Fl-score to measure
the effectiveness of different models in finding the
dependence relationships. Note that the true dependence
relationships in £ are known in the generated data.
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(a) (b)
Fig. 1. F1-scores for SGM, NODGM and ODGM when varying p and p.
(a) Varying p. (b) Varying p.

Given an estimated E returned by a method, we define
these metrics as follows:

{(i,4) : (5,5) € B, (i,5) € E}|

Pre = = )
I{(@,7) : (i,5) € E}| R
oo MG3): (19) € B, (i,5) € BY
I{(4,7) : (i,4) € E} ’
2- Pre- Rec
= Pre + Rec

Moreover, we fix the fitness threshold ¢; = 0.1, combina-
tion threshold ¢, = 0.6, y = 0.1 and Ay = 0.2 in the synthetic
data to evaluate our proposed model on different settings
where the number of nodes p and the parameter p are vary-
ing. In reverse, we study and visualize the effect of some of
these hyper-parameters on a real-life traffic network in the
next section where the number of nodes is given without
parameter p. We set the number of seeds as |S| = K and
each S; is selected randomly from the K Erdos-Rényi
graphs with size |S;| = 3.

6.1.2 Results

Varying p. To evaluate these methods on networks of var-
ious sizes, we vary p from 100 to 900. We fix p = 0.3 in
this setting. The performances of all the methods are
shown in Fig. 1a. We can see that when p is small, SGM
performs as well as ODGM, because a single graphical
model can work well. However, as p increases, the accu-
racy of SGM falls rapidly. As explained in Section 4.2, a
relatively large p will lead to worse performance with
small n. However, both decomposition methods still
work well with the increase of p. ODGM achieves a high
accuracy and outperforms NODGM consistently, because
non-overlapping decomposition cannot capture the over-
lap information.

Varying p. The parameter p plays an important role on
controlling the homogeneity of the network. When p =0,
it means the network is essentially heterogeneous and is
actually composed of several separate sub-networks,
while a large p indicates that the edges in the network
tend to distribute homogeneously. Fig. 1b shows the F1-
score of ODGM and NODGM while p is varying, and in
this setting we fix p=>500. As expected, when
p approaches zero, NODGM performs as well as ODGM
because the network can be divided completely into sub-
networks. But as p increases, the disparity between
ODGM and NODGM becomes larger since ODGM can
discover the overlaps while NODGM losses more
information.

(@ (®) ©

Fig. 2. (a) The real-life traffic network; (b) the non-overlapping decompo-
sition structure learned by NODGM; (c) the overlapping decomposition
structure learned by ODGM.

6.2 Traffic Data
6.2.1 Description and Setting

In this section, we evaluate our methods on real-life traffic
data. The features in this traffic dataset are observations col-
lected from sensors located on ramps in a highway traffic
network. Each observation is the vehicle count during a
time interval. Fig. 2a shows the structure of the highway
traffic network from a province in China, in which each cir-
cle represents a traffic station consisting of an on-ramp and
an off-ramp, and the line between any connected traffic sta-
tions is the bidirectional highway. There is an important
ring in the network which is amplified on the right hand
side of Fig. 2a—the city in the center of this ring is a big city
and plays a central role in the entire traffic network. We
study both the static and dynamic traffic network in this
dataset.

There are total 180 traffic stations (circles), which corre-
spond to 360 ramps, i.e., p = 360. We first study the static
network, where the observations are collected at time inter-
val 9:00-9:15 from 2011/1/1 to 2011/2/28 (59 days). There-
fore, n =159 for each feature. Due to the stability and
periodicity of traffic behaviors, the observations collected
from the same time duration in each day (e.g. the consid-
ered interval 9:00-9:15 here) are assumed to follow a Gauss-
ian distribution.

In addition to the static setting above, we also study the
daily evolvement of this network, where each day is
divided into 96 time intervals: 0:00-0:15, 0:15-0:30, ..., 23:45-
24:00. We assume that the dependence relationships among
variables during each time interval is changeless.

If no specific settings are declared, we use ¢; =0.1,
€ =0.6, y=0.1, Ao =50, and set the number of seeds
|S| = 12 with each |S;| =6 as default in both static and
dynamic studies. We will discuss how to select some of the
hyper-parameters in specific learning tasks later. Since there
is no ground truth for the precision matrix in real-life traffic
data, Fl-score cannot be measured. Moreover, since the
NODGM and ODGM methods utilize an incremental strat-
egy by solving the problem (4) or problem (9) at each step, it
does not optimize the value of the negative log-likelihood
defined in Eq. (1) directly. Therefore comparing the value of
the negative log-likelihood may not be a good criterion to
evaluate the model performance. Nevertheless, we can uti-
lize the discovered dependence relationships to construct
predictive models for predicting the traffic flows, and evalu-
ate different models in view of the prediction performance.
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(c) ODGM

(b) NODGM

(a) SGM
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(d) SGM (e) NODGM (f) ODGM

Fig. 3. Detailed dependence relationships among the selected features: (a), (b) and (c) are correlations discovered by SGM, NODGM and ODGM
among the local concentrated features respectively; (d), (e) and (f) are correlations discovered by SGM, NODGM and ODGM among the scattered

features respectively.

Moreover, the dependence relationships detected are the
most important information for traffic analysis, and our
domain experts can help with their knowledge on the inter-
active relationships in the traffic network, which can also
provide a measurement for different models.

6.2.2 Results and Analysis in Static Setting

Figs. 2b and 2c give the subgraph structures returned by
NODGM and ODGM,, respectively. For clear representation,
we draw the results based on the initial traffic network with
180 traffic stations instead of 360 features, and a subgraph
contains a traffic station node iff at least one feature (ramp)
of this traffic station belongs to it. In the figures, the ellipses
with the same label denote an indexed subgraph. Since non-
overlapping subgraphs have no intersections, the subgraphs
cannot be combined together, and thus the number of final
subgraphs equals to the number of seeds in Fig. 2b. For the
overlapping structure, when two subgraphs overlap at a
certain threshold ¢,, they are combined together. Thus, we
end up with eight subgraphs in Fig. 2c.

From the two figures, we can observe: (1) both NODGM
and ODGM show that the dependence relations between
the vehicle flows follow the spatial distribution in general—
the nearer two features locate spatially in the traffic net-
work, the more correlated they tend to be; (2) ODGM high-
lights some crucial traffic nodes that are highly overlapped,
such as the nodes on the central ring. As mentioned earlier,
the central ring is around the central city and plays an
important role in the entire traffic network. Additionally,
traffic station C on the ring is the passageway connecting
the unique airport of the entire network, and traffic stations
A and B are the top 2 traffic stations with the highest vehicle
flows measured on both on-ramp and off-ramp. These
domain information matches well with our ODGM result
and gives an reasonable explanation; (3) ODGM is able to
detect long distance dependence relations in addition to the
local relations within distances. For example, the compo-
nents (ellipses) of subgraph 1, 3, 4 and 5 are distributed spa-
tially, but they are highly correlated within the vehicle
flows. In other words, there also exists long distance origin-
destination demand in the traffic network. However,
NODGM cannot mine such information described in both
conclusions (2) and (3); (4) some of the sparsely located traf-
fic stations are not included in any subgraphs in both the
figures. We find that the vehicle flows in most of these traf-
fic station ramps are nearly 0 during the observation peri-
ods, and almost 80 percent of the ramps and their located
highways are newly built. Thus they are seldom used and
have no interactive relationships with other ramps.

Fig. 3 gives the detailed dependence relationships among
a set of selected features. For each selected traffic station ¢, ¢1
and 2 denote the on-ramp and off-ramp features, respec-
tively. In Figs. 3a, 3b and 3c, the features are selected from
traffic stations L-W in Fig. 2a, and these traffic stations are
selected locally concentrated. We can see that SGM detects
fewer correlation information than do NODGM and
ODGM, because a single graphical model treats the entire
network globally, and can only interpret the correlations
from a global view. In this setting, NODGM detects more
dependence relationships than do ODGM, which also
claims that NODGM focuses more on a local view while
ODGM is a compromise of SGM and NODGM. Figs. 3d, 3e
and 3f provide the detailed dependence relationships
among the features selected from A, C-K, O and S, which
are scattered in the network. From the results, ODGM dis-
covers more meaningful correlation information than do
SGM and NODGM, e.g., the relations among {F1, E2, F1,
F2, G1, G2}. Both ODGM and SGM are able to discover the
important long distance relations for the important traffic
stations A and C. However, NODGM is restricted by its
non-overlapping structure and only detects the inner rela-
tionship within subgraphs, even if A and C are highly corre-
lated with others.

These results obtained by ODGM are important for the
analysis of traffic systems. First, the traffic stations in the
same subgraph are highly correlated and should be consid-
ered together by traffic systems. For example, it is possible
that vehicle flows rush into each other within the same sub-
graph. Second, the dependence relationships are very help-
ful for traffic flow prediction and anomaly detection which
are hot concerns of traffic operators and managers. Third, it
is important to find the highly overlapped traffic stations.
These crucial traffic stations are correlated with a number of
regions, based on which the regions with heavy traffic can
be detected. On the other hand, the regions with light traffic
can also be reflected by independent traffic stations. These
information can be used by highway construction planners
to design new roads. To be more specific, in the next section
we will show how to import these discovered dependence
relationships in learning specific traffic tasks, and we pro-
vide a measurement for the discovered dependence rela-
tionships obtained from different models to evaluate their
performance.

6.2.3 Application in Traffic Flow Prediction

We utilize the discovered dependence relationships
obtained from different models to predict the traffic flows.
Specifically, we use the learned overlapping subgraphs to
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TABLE 1
Prediction Performance Based on Different Dependence
Relationships Obtained from the NODGM and ODGM Models

STL
23.94

NODGM
21.85

ODGM
19.46

TMSE (%)

construct multiple multi-task learning (MTL) models [33],
since the strong interactions existed in the subgraph can be
viewed as information sharing in the MTL paradigm. The
nodes corresponding to the off-ramps are viewed as the
tasks that need to be predicted, the nodes corresponding to
all the on-ramps are treated as features, and the tasks in the
same subgraph are viewed as related tasks that share some
common information. The tasks that do not belong to any
subgraphs are predicted via single task learning (STL) mod-
els. Denoting by y and X the responses of the tasks and the
features respectively, we consider a linear model
y = XW +§ (8 is the noise vector) as the predictive model
for both the MTL and STL settings. We use the MTL model
described in [33]." We define the Total Mean Square Error

(TMSE) as TMSE = % x 100%, where y; is the true

value of the traffic flow of the ith off-ramp, and g; is the cor-
responding predicted value. We use 49 samples for training
and the rest for testing. Table 1 shows the prediction perfor-
mance based on the dependence relationships obtained
from NODGM and ODGM. We also provide the prediction
performance of the STL model for all the off-ramps as the
baselines. From the results, we see that the dependence rela-
tionships obtained from both the NODGM and ODGM
models are helpful for improving the prediction accuracy
compared with STL, and the dependence relationships
obtained from the ODGM models are more useful than that
obtained from the NODGM model, which provides a mea-
surement for the performance of the NODGM and ODGM
methods in the view of traffic flow prediction.

6.2.4 Varying Hyper-Parameters in Static Setting

We study the effect of the hyper-parameters ¢y, €, and y
for CGSE. Fig. 4 shows some information about the
decomposition results obtained from ODGM when these
hyper-parameters are varying. When we vary each hyper-
parameter, we use the aforementioned default values for
the other hyper-parameters.

Parameter ¢; controls the minimum fitness, and restricts
the size of each subgraph. As shown in Fig. 4a, when
e decreases, more features are added into subgraphs and
the size of each subgraph becomes larger. Fig. 4b shows the
effect of ¢,. When ¢, is reduced, the subgraphs are more
likely to be combined together under ¢,. Fig. 4c shows
the relationship between y, which controls overlaps, and
the number of features with different overlap degrees. We
observe that when y increases, fewer overlaps exist in the
decomposition structure, and so does the number of the
overlapped features.

Fig. 5 visualizes the generated subgraphs for selected
hyper-parameter values to show the details. From these

1. http:/ /www.cs.ucl.ac.uk/staff/ A.Argyriou/code/
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figures, we can see that the property of each hyper-parame-
ter is in line with the results in Fig. 4, and these figures give
a more intuitive and understandable description for our
method.

Moreover, we also explorer how the obtained subgraphs
from different settings of the hyper-parameters influence
the prediction performance when we use these results to
predict traffic flows as we do previously. Fig. 6 shows the
prediction performance in terms of TMSE when we apply
different hyper-parameters ¢y, €, and y for ODGM and uti-
lize the corresponding results to construct MTL models.
From Fig. 6, we observe that an appropriate setting (e.g. the
default setting) for the hyper-parameters will obtain better
prediction performance. This implies that when we apply
the obtained subgraphs as well as the dependence relation-
ships to specific learning tasks, we can use a grid search
method to select these hyper-parameters from some candi-
date sets.

6.2.5 Results and Analysis in Dynamic Setting

In this experiment, we learn the graph structures at the
96 different time intervals during one day, and report the
results for the NODGM and ODGM methods in Fig. 7 by
selecting the graphs from four time intervals: 3:00-3:15, 9:00-
9:15, 15:00-15:15, 21:00-21:15. The settings keep default
except that for the time interval 3:00-3:15, the number of
seeds is set as |S| = 6 with each |S;| = 4. The reason will be
explained in the following analysis.

Figs. 7a, 7b, 7c, and 7d are learned by the NODGM
method, while Figs. 7e, 7f, 7g, and 7h are obtained by the
ODGM method. We can observe that: (1) the subgraphs
learned at different time intervals from both NODGM
and ODGM methods show different structures, implying
that the dependence relationship among the traffic net-
work evolves over time; (2) both the number and the size
of the subgraphs are small, since there is merely depen-
dence relationship existed in the graph at the time inter-
val 3:00-3:15. Actually, during the time interval 3:00-3:15
in each day, i.e. the late night, there are very few vehicles
traveling on this highway network (most of the values are
zeros), and it is even hard to find some initial small seeds
such that some correlations exist there. This explains the
results in Fig. 7e and why we use a different setting with
smaller number and size of the initial seeds for this time
interval; (3) NODGM still fails to detect long distance
relations and maintain the subgraphs independent, while
ODGM is effective to discover long distance dependence
relationships. For example, at time interval 3:00-3:15 in
Fig. 7a again, the result obtained from NODGM is almost
the same with its initial six seeds (subgraph-3 and sub-
graph-4 are exactly the initial seeds, where one cycle con-
tain two nodes, an on-ramp and an off-ramp), and no
meaningful insights can be obtained. However, ODGM
combines the subgraph-2, subgraph-3 and subgraph-4 in
Fig. 7a into one subgraph-2 in Fig. 7e, which implies that
there exist long distance dependence relationships among
these distant ramps. As being made aware by our domain
experts, during the late night of each day such as 3:00-
3:15, lots of trunks loading with mineral travel from east
to west or west to east across this highway network,
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which leads to frequent connections between the sub-
graph-3 and subgraph-4 in Fig. 7a. This is just captured
by the subgraph-2 in Fig. 7e. Such domain information
verifies the results learned by the ODGM method reason-
ably; (4) the overlapping parts in different time intervals
are quite different. It has been discussed that the overlaps
highlighted by ODGM in the traffic network play crucial
roles. Therefore, the evolvement of the overlaps indicates
the evolvement of the busy areas or the locations with
heavy traffic. Such information is essentially important

for learning the dynamics of the traffic behaviors and is
helpful for traffic predication.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed an overlapping decomposition
technique for the Gaussian graphical model of a large scale.
The technique utilizes an additive expanding property and
reduce the problem of solving a (k4 1)-node Gaussian
graphical model to the problem of solving a one-step vector
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regularization problem based on a solved k-node Gaussian
graphical model. Detailed asymptotic analysis of this tech-
nique was discussed. Based on the additive expanding
property, we developed a constraint greedy subgraph
expansion algorithm to generate overlapped subgraphs. We
demonstrated on both synthetic data and real-life traffic
data that the overlapping decomposition method is
more powerful than the single graphical model and its non-
overlapping decomposition counterpart. Moreover, in the
application of the traffic data analysis, we study both the
static and dynamic cases, and the results show that our
models can provide rich information for traffic analysis.

In the current paper, we focus on the Gaussian graphical
model, which deals with undirected graph structures. As
one of the future direction, it is interesting to apply the over-
lapping decomposition technique to deal with directed
graphical models with other formulations. In highway sys-
tems, vehicles travel through the traffic network with time
costs, therefore, some time lags exist among the dependen-
cies of different ramps. As another future direction, we are
interested in studying the decomposition problem by con-
sidering lag intervals for temporal dependency analysis.
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