Multi-Stage Multi-Task Learning with Reduced Rank

Lei Han' and Yu Zhang?*
'Department of Statistics, Rutgers University
2Department of Computer Science and Engineering, Hong Kong University of Science and Technology
1han @stat.rutgers.edu, leihan.cs @ gmail.com; 2yu.zhang.ust@gmail.com

Abstract

Multi-task learning (MTL) seeks to improve the general-
ization performance by sharing information among multiple
tasks. Many existing MTL approaches aim to learn the low-
rank structure on the weight matrix, which stores the model
parameters of all tasks, to achieve task sharing, and as a con-
sequence the trace norm regularization is widely used in the
MTL literature. A major limitation of these approaches based
on trace norm regularization is that all the singular values
of the weight matrix are penalized simultaneously, leading
to impaired estimation on recovering the larger singular val-
ues in the weight matrix. To address the issue, we propose a
Reduced rAnk MUIti-Stage multi-tAsk learning (RAMUSA)
method based on the recently proposed capped norms. Differ-
ent from existing trace-norm-based MTL approaches which
minimize the sum of all the singular values, the RAMUSA
method uses a capped trace norm regularizer to minimize
only the singular values smaller than some threshold. Due to
the non-convexity of the capped trace norm, we develop a
simple but well guaranteed multi-stage algorithm to learn the
weight matrix iteratively. We theoretically prove that the esti-
mation error at each stage in the proposed algorithm shrinks
and finally achieves a lower upper-bound as the number of
stages becomes large enough. Empirical studies on synthetic
and real-world datasets demonstrate the effectiveness of the
RAMUSA method in comparison with the state-of-the-art
methods.

Introduction

Multi-task learning (MTL) (Caruana 1997) seeks to improve
the generalization performance of multiple learning tasks
by sharing common information among those tasks. Many
MTL methods have been proposed by learning common
feature representations (Caruana 1997; Argyriou, Evgeniou,
and Pontil 2008; Liu, Ji, and Ye 2009; Zhang, Yeung, and Xu
2010), learning task groups (Han and Zhang 2015a), learn-
ing task relations (Zhang and Yeung 2010a; Zhang 2013;
Zhang and Yeung 2014), utilizing or learning tree structure
among tasks (Han et al. 2014; Han and Zhang 2015b), and
so on. MTL has been successfully applied to a wide range
of applications including medical risk evaluation (Caruana,
Baluja, and Mitchell 1996), image annotation (Fan, Gao, and
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Luo 2008), speech recognition (Parameswaran and Wein-
berger 2010), age estimation (Zhang and Yeung 2010b), dis-
ease progression predication (Zhou et al. 2011), and so on.
One common assumption in MTL is that all the learning
tasks share some common structure including, for exam-
ple, hidden units in neural networks, probabilistic priors in
Bayesian model (Zhang, Ghahramani, and Yang 2005; Yu,
Tresp, and Schwaighofer 2005), and feature representations
(Argyriou, Evgeniou, and Pontil 2008; Liu, Ji, and Ye 2009;
Zhang, Yeung, and Xu 2010).

In many real-world MTL problems, challenge arises with
high-dimensional data. To address this issue, several ap-
proaches (Chen, Zhou, and Ye 2011; Chen, Liu, and Ye
2012) have been proposed to learn the low-rank structure
on the weight matrix which stores the model parameters of
all tasks. Then the objective functions are usually formu-
lated by minimizing the empirical loss as well as the rank of
the weight matrix, which is also known as the reduced rank
regression problem (Reinsel and Velu 1998) if the learn-
ing tasks solve regression problems. Unfortunately, the rank
minimization problem is NP-hard due to the combinatorial
nature of the rank function. A commonly used approach to
overcome the computational infeasibility is to resort to min-
imizing the trace norm, the sum of the singular values of a
matrix, which is shown as the tightest convex lower bound
of the rank function (Recht, Fazel, and Parrilo 2010). As a
consequence, the trace norm regularization has been widely
used in MTL literature and empirical results have shown
that the trace norm regularization leads to improved perfor-
mance.

For a matrix, its rank is determined by the number of its
singular values being 0. So in order to obtain low-rank ma-
trices, the small singular values should be penalized to ap-
proach zero but the large ones can take any positive value.
In other words, to achieve low-rank, only part of the singu-
lar values but not all of them should be penalized. Unfor-
tunately, all the existing MTL methods to seek for the low-
rank structure use the trace norm regularization to penalize
all the singular values of the weight matrix simultaneously,
and thus the estimation may not recover the underlying low-
rank structure well, leading to the suboptimal performance.

Recently, the capped norms (Zhang 2009; 2010; 2011;
Gong, Ye, and Zhang 2012; Sun, Xiang, and Ye 2013)
have gained the popularity since those norms are capable



of penalizing part of the parameters lower than a thresh-
old. For learning low-rank matrices, the capped trace norm
has been used to improve the robust principal component
analysis (Sun, Xiang, and Ye 2013). Moreover, the trun-
cated trace norm, which is related to the capped trace norm,
has been used for matrix completion (Zhang et al. 2012;
Hu et al. 2013). However, to our knowledge, no effort has
been made to learn a better low-rank structure for the weight
matrix in MTL problem via the capped trace norm.

In this paper, we aim to fill this gap by investigating the
use of the capped trace norm in MTL problems. Specifi-
cally, we propose a Reduced rAnk MUIti-Stage multi-tAsk
learning (RAMUSA) method, which uses the capped trace
norm regularizer to only penalize the singular values smaller
than a threshold. Similar to most of the capped norms, the
capped trace norm regularizer is non-convex. In order to
solve the resulting non-convex optimization problem, we de-
velop a simple and efficient multi-stage algorithm to learn
the weight matrix iteratively. We further show that at each
stage of the proposed algorithm, the subproblem reduces to
a problem regularized with the truncated trace norm (Zhang
et al. 2012; Hu et al. 2013), and we use an alternating opti-
mization method to solve the subproblems in a way similar
to (Zhang et al. 2012; Hu et al. 2013). Moreover, we theo-
retically prove that for any initial value of the weight matrix,
the parameter estimation error shrinks after each learning
stage and achieves a lower upper-bound when the number of
learning stage becomes large enough, if the threshold con-
stant is appropriately chosen. Such theoretical results pro-
vide important guarantees for the proposed multi-stage algo-
rithm to achieve good estimation performance. For empirical
studies, we first evaluate the proposed RAMUSA method
on synthetic data, and the experimental results well match
the properties revealed in the theoretical analysis. Then we
evaluate on five real-world datasets with distinct applica-
tion scenarios. The experimental results on those datasets
demonstrate the effectiveness of the proposed RAMUSA
method.

The RAMUSA Model

For clear presentation, we list notations frequently used in
Table 1. Suppose we have m learning tasks and the train-
ing data for the i-th task is denoted by (X;,y;) where X; €

R" %4 is the data matrix with n; training samples stored in
the rows, d is the feature dimensionality, and y; € R™ is the
vector of the labels corresponding to the n; training samples
in X;. If the values in y; are continuous, the ¢-th task is a
regression problem and otherwise a classification problem.
The linear function for the i-th task is defined as f;(x) =

wlx, where W = [wy,- -, W] € R™ is the weight
matrix or parameter matrix. In order to estimate the low-
rank task structure, the widely used trace norm regulariza-
tion solves the objective function minyw L(W) + A||W||.,
where L(W) is the empirical loss on the training data and A
is a positive regularization parameter. Since the trace norm
penalizes all the singular values of the weight matrix simul-
taneously, the low-rank structure may not be well estimated.
In order to achieve a better recovery of the low-rank struc-
ture, the capped trace norm only penalizes the sum of some

Table 1: Notations used in this paper.

Notation Description

w € R™ A vector w with length m.

W e R¥X™ A matrix W with size d x m.
w?, wy, Wi The j-th row, i-th column, and (j, ¢)-th element of matrix W.
I, An a X a identity matrix.
I l2 The £3 norm for any vector.
|-l The matrix Frobenius norm.
(G The inner product.
N(u,o?) Normal distribution with mean £ and variance o2
N, The index set {1,2, - ,m}.
tr(-) The trace operator.
{os (W), The set of non-increasing ordered singular values of matrix
W € RYX™ where R = min(d, m).

[|W| .« The matrix trace norm, which is >>% | o; (W).
[[WI[,.— Z?:H-l o; (W) for any non-negative integer v (r < R).
W+ >-i_1 03(W) for any non-negative integer 7 (r < R).

I(-) The indicator function.

small singular values:

R
Z min(o; (W), 1), ey
i=1

where 7 is a threshold. Note that with the threshold 7, only
the singular values smaller than 7 contribute to the capped
trace norm regularizer in Eq. (1), while the singular values
larger than 7 are capped. This is one reason that the capped
trace norm regularizer could provide a better approxima-
tion of the rank function than the trace norm. Based on the
capped trace norm defined in Eq. (1), the objective function
of the RAMUSA model is formulated as

R
min L(W) + A;min(m (W), 7). 2)
When 7 = 0, problem (2) reduces to the empirical risk

minimization over the m tasks, and when 7 — ©o, prob-
lem (2) becomes the trace norm regularization problem. So
the capped trace norm regularization is a generalization of
the trace norm regularization. In this paper, we focus on
the square loss, i.e, L(W) = L3, %HYL — X;wi)3.
Other loss functions, e.g., the hinge loss, can be handled in
a similar way. Obviously problem (2) is non-convex due to
the capped trace norm regularizer, and thus it is not easy to
solve. In the next section, we show how to solve it.

The Multi-Stage Algorithm for RAMUSA

In this section, we propose a multi-stage algorithm to solve
problem (2).

The multi-stage algorithm is an instance of the
majorization-minimization (MM) algorithm (Hunter and
Lange 2004), an iterative algorithm, which in each itera-
tion constructs a surrogate function as the upper-bound of
the original objective function based on the solution of the
previous iteration and then minimizes the surrogate function
instead. The MM algorithm is guaranteed to converge to a
local optimum and so is the proposed multi-stage algorithm.



One benefit of the MM algorithm is that the constructed sur-
rogate function is usually easier to be solved than the orig-
inal optimization problem, leading to a more efficient solu-
tion. The detailed algorithm is shown in Algorithm 1.

For our multi-stage algorithm, the new regularizer || - || .-
in step 4 of Algorithm (1) is a surrogate function of the
capped trace norm regularizer by omitting some constant
with 7 defined based on the solution of the last stage [ — 1
(I > 2). The regularizer || - ||~ in step 4 of Algorithm
(1) is essentially the truncated trace norm introduced in
(Zhang et al. 2012; Hu et al. 2013), which only penalizes
the smallest R — r singular values of W. The difference
between our work and (Zhang et al. 2012; Hu et al. 2013)
is that r needs to be pre-defined in (Zhang et al. 2012;
Hu et al. 2013) while in our case, r is obtained from the
previous estimation on W at each stage of Algorithm 1.

Algorithm 1 Multi-Stage Algorithm for the RAMUSA Model
Input: X, Y, \, 7;

Output: W;

1: R :=min(d,m);

2: r:=0;

3: forl=1,2,---,Ldo

4:  Solve problem minw {L(W) + A\[|W]|| .- }.
5 r:= 2?:1 I(o; (WD) > 7);

6: end for

As we will see later, the problem in step 4 of Algorithm 1
is easier to be optimized than problem (2), which is one com-
putational advantage of our multi-stage algorithm. More-
over, the problem in step 4 at each stage tends to shrink only
small singular values of W. Hence, the RAMUSA method
can overcome the limitation of the trace norm regularization
by adaptively regularizing the singular values of W accord-
ing to the solution obtained from the last stage. In the first
iteration, the problem in step 4 is just the trace norm regu-
larization problem since r is initialized to 0. When [ > 2,
the operator ||W ||,.— is non-convex and so is the problem in
step 4. Therefore, the key step in Algorithm 1 is to solve the
problem in step 4 efficiently when [ > 2.

Next, we use an alternating optimization method to solve
the problem in step 4 efficiently. Before presenting the de-
tailed algorithm, we first introduce an useful lemma.
Lemma 1 (Zhang et al. 2012; Hu et al. 2013) Suppose
UXV7T s the singular value decomposition (SVD) of
W, where U = (uy,---,uy) € R and V =
(Vi,--+,va) € R™*™ are unitary matrices, and ¥ €
RIX™  Define r = 2?:1 I(oy(W®DY > 7) and let

A=(u, - ,u)",B=(vi, - ,v,.)T, then |W|,+ =

MaXAeC, 4,BECm T (AWBT) = tr (AWET> where
Cap = {A|A e R AAT =1,}.

Lemma 1 shows that an lower bound for the sum of largest
singular values of a matrix, which brings a reformulation for
the capped trace norm and facilitates the optimization of the

problem in step 4 of Algorithm 1. Based on Lemma 1, we
can reformulate the problem in step 4 of Algorithm 1 as

Jnin {L(W) F AW = Atr (AWBT)} EY

Algorithm 2 The Alternating Optimization Method for Solving
Problem (3)
Input: X, Y, \, I, 7, Wo, N;
Output: w®;
1: fort =0,1,--- ,N —1do
2:  Compute A B, according to Lemma 1;
3:  Compute W1 by solving the problem in Eq. (4);
4: end for
5: W = Wt;

Problem (3) can be solved via an alternating way when
I > 2 and the detailed procedure is shown in Algorithm 2.
At the ¢-th iteration, we first fix the value of W and compute

At and Bt according to Lemma 1, and then update W with
fixed A; and B; by solving the following problem as

Wi = arg min {L(W) £ AW, — Atr (AtWBtT) } ,
4

Since all the terms L(W), ||[W]|. and —tr (AtWBtT)

are convex, problem (4) is convex. We use the FISTA
method (Beck and Teboulle 2009) to solve problem (4). The
FISTA method solves problems as

min f(W) + g(W), )

where function f(-) is convex and smooth, and function g(-)
is convex but possibly non-smooth. In order to solve prob-
lem (4), we can define g(W) = A||W||. and f(W) =

L(W) — Atr (AtW(Bt)T) The FISTA method solves the
proximal function of problem (5) at Wk as
min Q(W, W) =f(Wx) + (W — Wi, VF(Wi))
+ DIW = Wil[f + g(W),
which can be rewritten as

N « 1 A
Wit = argin W — (Wi — V1 (W) [1-+9(W), ©)

where p is the Lipschitz constant that can be determined

w.r.t. (Beck and Teboulle 2009) and V f (Wk) can be com-
puted as

V(W) = VL(W}) — AA7 B,. (7)

Algorithm 3 FISTA Algorithm for Solving Problem (4)

Input: X, Y, \, A;, B;, Wy, N', 6y = 1;
Output: The optimal solution of Eq. (4);
1: fork=0,1,--- ,N' —1do

2:  Compute V f(Wy) as in Eq. (7);

3:  Compute the closed-form solution of problem (6);
2
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5 Wigr = Wi + g1 (Wi — Wa:;

6: end for

Since g(W) = A||W]|., Problem (6) has an analytical so-
lution, which can be obtained via the soft-thresholding oper-

ation on the singular values of W), — %V f(W},) according




to (Cai, Candes, and Shen 2010). The whole procedure for
the FISTA algorithm is depicted in Algorithm 3.

In order to analyze the complexity of the whole algorithm,
we first analyze the complexity of Algorithm 3 which is the
innermost one. The main computational cost in each itera-

tion of Algorithm 3 comes from calculating V f(W},) and
the SVD operation. For simplicity, we assume that all tasks
have the same number of training samples. Since the gradi-
ent of the square loss needs to compute X7 X; and X'y,
which can be pre-computed and stored, VL(W}) can be
computed in O(d?m) time. Moreover, computing A7 B,
takes at most O (dm min(d, m)) time. The closed-form so-
lution of problem (6) needs to do matrix SVD which will
cost O(mdmin(m, d)). In total, Algorithm 3 can be com-
pleted in O(N'd?m) where N’ is the number of iterations.
The time complexity of Algorithm 2 is N times higher than
that of Algorithm 3, and the time complexity of Algorithm
1 is £ times higher than that of Algorithm 2 with N and
L as the numbers of iterations in the respective algorithms.
From the experimental results, we find that both Algorithms
1 and 2 need very small numbers of iterations to converge
and hence the whole algorithm to solve RAMUSA is still
very efficient.

Theoretical Analysis

In this section, we show that the estimation performance of
the multi-stage algorithm can be theoretically guaranteed.
We first present a performance bound for the innermost con-
vex problem (4), and then we extend this bound to show
that the parameter estimation error bound of the RAMUSA
method based on Algorithm 1 shrinks after each stage and
can finally achieve a lower upper-bound when the number
of the learning stage becomes large enough. For notational
simplicity, we assume that the numbers of training samples
for all the tasks are the same and denote it by n. The general
case that different tasks have different training sizes can be
similarly analyzed.

Setup

We assume that the ground truth for the relation between

the data sample and its label is a linear function plus a

Gaussian noise, which is defined as y;; = xgi)v‘vi + 0js

fori € Ny, and j € N, where y;; is the jth element in
yi» W = [W1,...,W,,] is the true weight matrix, djiis a
Gaussian noise. Each noise §;; follows a normal distribu-
tion as §;; ~ N(0,0?) and different noises are assumed to
be independent of each other. For notational simplicity, we
define y; = f; + 9; fori € N,,,, where f; = X,;w; and
8; = [0i1, -+, 0] € R™. Let X € R™™X™ be a block-
diagonal matrix with its ¢-th block formed by the data ma-
trix X; € R**4 j € N,,,. Define a diagonalization operator
D on any matrix W = [wy,--- ,w,,] € R¥™ such that
D(W) € R™¥*™ js a block diagonal matrix with its i-th
block formed by the column w;. Let F = [f1,--- , fn]. We
define F = {i : 0;(W) # 0} and G = {i : 0;(W) < 7} for
an estimator W. For any set A, let A€ be the complement
set of A, and |.A| denotes the cardinality of .A.

We first present a basic assumption before we state the
main theoretical results.

Assumption 1 For any matrix A € R4*™, we assume that
there exist a constant

— in 1XDA)F
T ACR(s) vmn||All. >0, ®
where the restricted set R(s) is defined as R(s) =
{A e R*™: A #0,rank(Q(A)) = s < R}.

Assumption 1 refers to the widely used eigenvalue as-
sumption. Similar assumptions are also used in several ex-
isting MTL works (Lounici et al. 2009; Chen, Zhou, and Ye
2011).

Estimation Error Bounds

We first present an important property for the innermost con-
vex problem (4).!

Theorem 1 Let W be the optimal solution of problem (4) at
any iterationt (t = 1,--- , N)in Algorithm 2 of the (I+1)-th
stage in Algorithm 1. Let VAVil) be the optimal solution at the
I-th stage. Define r; = Zf;l I(o; (Wi”) > 7) and note that
r; is unchanged within the (I + 1)-th stage. For any matrix
W e Rdxm if we choose A as \ > %\/d + ¢, then with
the probability of at least 1 — mexp(—%(c—dIn (1 + 2))),
we have

1 o) el 2 1 el 2
— | XD(W) ~ D(F) |} < — | XD(W) - D(F) |}
AL+ Vm) [W = Wl + AW — W]+, ©)

where c is some positive scalar.

Theorem 1 reveals that for any matrix W € RIX™m  the
estimation error for problem (4) is upper-bounded by Eq.
(9). Based on this theorem, we state the important estimation
error bound of the RAMUSA model based on Algorithm 1
in the following theorem.

Theorem 2 Let VAVilH) be the optimal solution at the (I +
1)-th stage. If we choose X as in Theorem 1 and choose T as

T > )“/g?, then based on Assumption 1, with probability

of at least 1 — mexp(—3(c — dIn (1 + £))), we have

. - MWER=—7\' -
(Wi - wi < (D) e - w.

TAWT + 1+ /m)
e AVRE=T {10

where T is the true rank of W, and WO js the initial weight
matrix for the first stage. When | — oo, we have

(WD < AVTELEVI) g
T Tk2—-MNR-T

1Due to page limit, we put all the proofs in the supplementary material (http:
//www.stat.rutgers.edu/home/lhan/).



Theorem 2 provides important estimation error bounds in
terms of the trace norm on the difference between the esti-
mator and the true weight matrix: (1) Eq. (10) implies that

given any initial value WO for the weight matrix, the up-

per bound of ||W£l) — W||.. is shrinkable after each stage
MWER—T

TR

[, since ( ) < 1 by choosing 7 as in Theorem 2; (2)

when [ is large enough, we can obtain a lower upper-bound
in Eq. (11), which is a constant and irrelevant with the initial

value W (), Under Theorem 2, the estimation performance
of the multi-stage algorithm is well guaranteed even if the

initial guess for the weight matrix W is not very good.

Related Work

In (Sun, Xiang, and Ye 2013), the capped trace norm is used
to improve the robust principal component analysis and the
truncated trace norm is introduced in (Zhang et al. 2012;
Hu et al. 2013) for the matrix completion problems. Com-
pared to those works, our RAMUSA model has good the-
oretical properties. Moreover, all the previous works, using
either the truncated trace norm or the capped trace norm, are
for matrix completion problems, while our work is to accu-
rately estimate the model parameters for multiple tasks via
the capped trace norm.

Experiments

In this section, we conduct empirical experiments on one
synthetic dataset and five real-world datasets to study the
proposed RAMUSA method.

The baseline algorithms used for comparison include: (1)
The ¢1-norm regularized single-task algorithm (Lasso) (Tib-
shirani 1996); (2) the ¢5-norm single-task ridge regression
(RR) model with \||W||% as the regularizer; (3) the multi-
task feature learning (MTFL) algorithm introduced in (Ar-
gyriou, Evgeniou, and Pontil 2008) which utilizes the trace
norm as a regularizer.

Experiments on Synthetic Data

We first conduct experiments on synthetic data. We study
multi-task regression problems. The number of tasks is
assumed to be m = 20. The columns of the true
weight matrix W, i.e. {Wy, -, W}, are sampled from
5-dimensional Gaussian distribution with zero mean and
covariance wdiag([1,0.64,0.49,0.36,0.25]), where w is a
weight to control the magnitude of the diagonal elements
and operator diag(-) converts a vector to a diagonal ma-
trix. To construct low-rank weight matrix, we add 10 irrele-
vant features and therefore the feature dimensionality is 15.
Note that a larger w leads to larger singular values of W.
Moreover, we assume that all the tasks have the same sam-
ple size n. For the ¢-th task, each column of the data ma-
trix X; € R"*? is generated from a normal distribution
N(0,1,,), where 0 denotes a zero vector or matrix with ap-
propriate size. The label y; for the i-th task is generated as
y: = X;W; + €;, where €; is a noise vector generated from
N(0,L,). )

Since the true weight matrix W is given in the synthetic
data, the mean square error (MSE), which is defined as

MSE(W) = % er;l (Wz —V_VZ)T)(T)(z (Wi —V_VZ'), is used
to measure the performance of the estimation. We generate
50 and 200 samples for training and testing separately and
use another 200 samples as a validation set to select the reg-
ularization parameters and hyperparameters in all the com-
pared methods including the parameter 7 in the RAMUSA
method. We vary the value of w to simulate different condi-
tions on singular values in W.

Table 2 shows the average MSE of various methods over
10 simulations in terms of mean=standard deviation. From
the results shown in Table 2, we have the following conclu-
sions: (1) the RAMUSA method outperforms all other com-
peting algorithms; (2) the multi-task learning algorithms, i.e.
the MTFL and RAMUSA methods, outperform the single-
task learning algorithms, i.e. the Lasso and RR models.

Table 2: Averaged MSE of various methods over 10 simulations
on the synthetic data (mean=standard deviation).

w Lasso RR MTFL RAMUSA

5 0.762+£0.223 1.264+0.253  0.210+0.018  0.2054-0.021
10 0.888+0.289 1.405+0.382  0.2324+0.043  0.227+0.051
15 0917£0.314  1.640+£0.497  0.261+0.029  0.2121-0.040
20 0.922+0.274 1.488+0.333  0.28340.038  0.230+0.037
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Figure 1: The performance of RAMUSA when 7 changes. The
performance of RAMUSA when 7 = oo (i.e. the trace norm regu-
larization) is also plotted as the baseline.

Figure 1 shows the performance of RAMUSA when 7
changes. The performance of the trace norm regularization
corresponding to 7 = oo in RAMUSA is also provided as
a baseline. According to Figure 1, we can find that when 7
is increasing from 0, the MSE of the RAMUSA method first
decreases and then increases, and when 7 is large enough,
the performance of RAMUSA keeps stable and approaches
that of the trace norm regularization, which is accordance
with the property of the RAMUSA model implied by Theo-
rem 2.

Figure 2 plots the parameter estimation errors defined in

Theorem 2, i.e. ||W£l) — W||.., against the number of stages
[ when we set 7 = 1. We see that the results are in line with
the theoretical results revealed in Theorem 2 that the param-



eter estimation error (Err) shrinks after each stage according
to Eq. (10), and the error will level off after several stages
according to Eq. (11), where only 5-7 stages are needed to
reach the convergence.

3 3
304 15 55
28 T 3| 50
e « . e
= 20 P R M = = =49 RR
o w RR a MTFL
=rauss) | 0 QuTe e i © M
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Err

Figure 2: The change of Err when increasing the number of stages,
where Err = |[W{ — W||...

Experiments on Real-World Data

In this section, we evaluate the empirical performance
on five real-world datasets with distinct application fields,
where both regression and classification problems are in-
volved. The datasets include the School data?, the SARCOS
data’®, the Microarray data®, the Traffic data, and the hand-
written letter data>. The first four datasets correspond to
multi-task regression problems where the normalized mean
squared error (nMSE) is employed as the performance mea-
sure, but the last one, the handwritten letter dataset, is
a multi-task classification problem with the classification
error as the performance measure. The descriptions of those
datasets, whose summary is shown in Table 3, are shown as
follows:

School Data: the objective is to predict the student exam
scores in different schools. Tasks correspond to schools, fea-
tures are attributes for describing students, and each task has
a different number of samples corresponding to students. We
randomly select 10%, 20% and 30% of the samples from
each task as the training set and the rest as the test set;
SARCOS Data: the problem is an inverse dynamics predic-
tion problem for a seven degrees-of-freedom anthropomor-
phic robot arm, which needs to map from the feature space
to seven joint torques. We randomly select 100, 200 and 300
samples to form the training set and randomly select 5000
samples to form the test set;

Microarray Data: this is a gene expression data set related
to isoprenoid biosynthesis. The tasks are finding the cross-
talks from the mevalonate genes to the plastidial genes. We
randomly select 20% and 40% of the samples as the training
set and use the rest for testing;

Traffic Data: this is to find the casual relationships from the
entries to the exits in a highway traffic network, where each
exit corresponds to one task and the information collected in
entries is considered as the features shared by all the tasks.
The settings are the same as those in the Microarray data;
Handwritten Letter Data: the goal is to discriminate between
7 pairs of letters, i.e. c/e, g/y, m/n, a/g, a/o, f/t and h/n. The
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features are pixel values of the handwritten letter. We ran-
domly choose 10% and 20% of the samples as the training
sets and the rest as the test set.

Table 3: Summary of the five real-world datasets.

School ~ SARCOS Microarray ~ Traffic  Letter
m 139 7 18 136 7
d 27 21 21 136 128
n 15362 48933 118 384 2000

Table 4: The averaged nMSE for the (1) School, (2) SARCOS,
(3) Microarray, and (4) Traffic datasets, and the averaged test error
(%) for the (5) Handwritten Letter data of various methods over 15

repetitions (mean4standard deviation).

Train Lasso RR MTFL RAMUSA
10% 2.28340.008 1.85440.026  0.5704+0.015  0.518+0.012
(€)) 20% 2.12940.130 1.694+0.028  0.483+0.007  0.45810.005
30% 2.08040.111 1.65040.028  0.45240.005  0.436:0.004
100 2.6064+0.035  2.439+0.021 0.181+0.010  0.170+0.010
2) 200 2.6044+0.035  2.289£0.027  0.159+0.007  0.146+-0.006
300 2.6204+0.030  2.221£0.026  0.136:£0.003  0.137+0.004
3) 20% 0.7944+0.092  0.78840.028  0.74640.038  0.739+£0.046
40% 0.700+0.043  0.7154+0.039  0.68040.025  0.675+0.031
@ 20% 0.566+0.015  0.61740.032  0.32840.006  0.316:0.006
40% 0.55240.020  0.6004+0.016 ~ 0.3104+0.010  0.300£0.008

10% 31.744+16.30  31.22421.22 13.45+£7.50 11.64+7.58

©) 20% 31.73£17.61 31.08420.95 11.8646.49 8.48+6.08

Each setting is repeated for 15 times to test the av-
erage performance of various methods. For the parame-
ter 7 in the RAMUSA method, we choose it in a candi-
date set [1073,1072, .- ,10%] via 5-fold cross validation.
According to the results shown in Table 4, the multi-task
learning algorithms, i.e. the MTFL and RAMUSA meth-
ods, outperform the single-task learning algorithms, i.e.,
the Lasso and RR methods, under all the settings, and our
RAMUSA method achieves the best performance in every
setting. Due to the different application scenarios in the five
datasets, we think that the RAMUSA method is able to have
good performance in various MTL applications.

Conclusion and Future Work

In this paper, we proposed a reduced rank multi-stage MTL
approach, RAMUSA, to learn the low-rank structure con-
tained in the weight matrix under the multi-task setting.
We developed a simple multi-stage algorithm to solve the
RAMUSA model where theoretical guarantees are provided
for the estimation performance.

In our future work, we will extend our RAMUSA model
to utilize other loss functions such as the hinge loss. More-
over, currently the threshold 7 is learned via the cross valida-
tion method. In our future study, we are interested in learn-
ing 7 and the weight matrix simultaneously in a principled
framework.
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