Supplementary Material for ‘Multi-Stage
Multi-Task Learning with Reduced Rank’

A. Some Basic Lemmas Used for Proofs

Lemma 3 Let 61,---,6, be n random variables that are
from the Gaussian distribution N (0, o). Given another se-

quence Ty, - ,Tn which satisfies x5 + - - - + 12 = 1, define
a random variable v as
1 n
=1

Then v follows a Gaussian distribution N (0, 1).

Lemma 4 Let x2 be a chi-squared random variable with k
degrees of freedom, then we have

Pr(z® > k +c¢) < exp (—% (c— kln (1—1— %))) ,

where c is a positive constant.

The proofs of Lemma 3 and Lemma 4 can be found in
(Chen, Zhou, and Ye 2011). The proof of Lemma 1 can be
found in (Zhang et al. 2012).

Lemma 5 For any matrices W and W with the same size
d x m, we have
R ~ A~
D (0i(W) = 0:(W))* < [W — W2, (in
=1
Lemma 6 Let 7 be the rank of W. For any estimator W,
we have the following inequalities satisfied:

Z]I oi(W ) < 7, (12)

i€F
> PetW) 2 7)< T2 S (W) - (W)
ieFe icFe

13)

Lemma 5 and Lemma 6 reveals the inherent relationships

among [(0;(W) > 7), 0;(W) — 0;(W), and |[W — W||2
for any estimator W.

B. Proofs in Section and Section

B.1 Proof of Lemma 2 For any non-negative integer r <
R, and matrices A € C, 4, B € C,. ,,,, we can directly obtain
the following result with the equality held in Lemma 1:

Wi+ = Zoz max

tr(AWB”).
Aec, a-BECr m

Now we have to show mMaxaec, 4,BeC,., IH(AWBT) =
tr (AWET) Actually, we have

tr (AWBT) =tr ((m, ) W (v, 7Vr))

—tr ((U1,~-- ) UV (vy, ,V'r))
—tr ((m,m ,ur)TU) » (VT(V17"' ,vr))
(5 2)2(3 )

= tr(diag([o1(W), -+ ,0r(W),0,---,0]))
—ZHUL =W+,

where I, is a r x r identity matrix. Then we reach the con-
clusion.

Next, we show ||[W/|,+ is convex with respect to W and
the operator ||-||,.+ is a norm. From the theorem 2.2 in (Chen,
Dong, and Chan 2013), we know that the function f(W) =
Zf;l w;o;(W) is convex with respect to W if and only if
the weights w;’s are decreasingly ordered by wi > ws >

- > wp > 0. For || W]|,+, we can rewrite

[W]l,+ =1-0:(W)+---4+1-0,(W)+0-0,41(W)+0-0 (W),

where the decreasing order of the weights are satisfied.
Therefore, is convex with respect to W. More-
over, for any matrix W, W; and Wy, we have: (1)
[W|,+ > 0; 2) |[W]|,+ = 0if and only if W = 0;
3) [|cW |+ = |c|||[W]|,+ for any scalar ¢; (4) [|[W1 +
Wall+ < [[Will+ + [[W2],+ due to the convexity of
| - ||,+. By the definition of norm, we know that || - ||,+
is a norm, which completes the proof.

B.2 Proof of Theorem 1 From Eq. (4), we have
L i X — i3
mn “
< o 2w =l AW AW,
+ Ar (AtWBi ) =t (AWB]) . (14)
Based on the property of the trace, we have
tr (A;WB]) = tr (WBJ A, ). (15)
Then, we have
% i X% — fill2
< i 1Xiwi = Fill3 + QW — [W].)

=1

We first compute the upper bound of > | (W;
Define a set of random events {A;} as

—w;, X;0;).

Ai = {|[Xdill2 < A}, Vi € Npy,.

For each A;, define a set of random variables {v;; } as
1<~ )
Vij = P Z%M%m] € Ny,
P

where :c; .. denotes the (7, k)-th entry of the data matrix X.

Since X; is normalized, the diagonal elements of X7 X; are
ones, and thus {v;1, - ,v;q} are i.i.d. Gaussian Varlables
following N'(0,1) by Lemma 3. Then we can verify that

Z;i 1 fj is a chi-squared random variable with d degree of



freedom. By choosing A according to Theorem 1, we have

2 2 2
P33 )t > 20

j=1 k=1

(fllX dill2 > A)

d
:Pr(z vfj >d+c)

Jj=1
1 4
< eXP(—§Hd(C))7

where pi4(c) = /c—dIn(1+ ) and the last inequality

holds due to Lemma 4. Let A = ﬂ ._, A; and denote by A
the complement of each event A;. Tt follows that

Pr(4) > 1~ Pr(|J AD) > 1~ mexp(~ 4 (0)).

=1
Under the event A, we can derive abound on ) /" | (W; —
w;, X;0;) as

Z —wi, X;6;) Z Wi — will2||X;0: |2
=1 =1

A Wi — will2

i=1
<VmA|W = W[.. (17

Next, we examine the bound for the trace term
tr ((W - W)EtTAt> By using Lemma 1, we have

Aiai(WfW)

=1

AW — Wi+ (8)

Atr ((W - W)BtTAt)

IN

Combining Eq. (16), Eq. (17) and Eq. (18) together with the
fact that ||[W||. — [[W]. < ||[W — W]|., we can reach the
conclusion. O

B.3 Proof of Lemma 5 The conclusion can be reached by
the following steps as

R
S (W) — 0y (W))?

i=1
R R
Z ) + ZO’l Z20’¢(W i (W
=1 B =1
HWHFJFHWHF*?ZW )oi(W)
=1

< [IWIIF + [[WIJF — 2tr(WTW)
=W - W|i < [W - W,

where the inequality is due to the Von Neumann’s trace in-
equality. O

B.4 Proof of Lemma 6 Fori € F,itis easy to see that

Z]IQ o (W

i€F

y> 7)< |F| =T (19)

Fori € F¢N G, we have 0;(W) = 0 and 0y(W) < 7,

therefore
Z HQ(O'i(W) >7)
ieFeng
=0 (20)
fc N 5 _ N 2
<29 S (W) - (W)

T — .
i€FeNg

For i € F°N G¢, we have 0;(W) = 0 and o;(W) > 7,
therefore we also have

> Plod(W)>7)

ieFenge
< |Fenge| Q1)
Fenge - L\ 2
<091 S (W) — W)
ieFeng
Combing Egs. (19)-(21), we reach the conclusion. O

B.5 Proof of Theorem 2 Let W = W and set A = W —
W. By Assumption 1, we have

. _ 1 . _
WIW = W2 < — | AD(W) - D). @2)

Let )\El) = M(o;(W 9)) > 1), we can rewrite the last
term in Eq. (9) as

AW — W+

R
= Z}\E”O’l(w - V_V)
=1
R
= AZH (W) > 7)o (W — W)

— )\Z (W) > 7)oy (W = W)
ieF

+AD o

ieFe

(W) > 1oy (W — W). (23)

By combining Lemmas 5 and 6 with Eq. (23), we have

AW - W,

A

R_ineﬁc (ai(W) —O'i(wil)))Q - —
W — W3

2

IA

T

A _ R _
(M VR o wn*) W — W]

A _ . _
(M VST g0 Wn*) W — W,

(24)
where the first inequality holds due to the Cauchy-Schwarz
inequality and Lemma 6, and the second inequality is due to
Lemma 5 and a fact that /a2 + b2 < a + bforall a,b > 0.

Now, by substituting Eq. (24) into Eq. (9) and combining



Eq. (22), we obtain

WD - W,
< )\\/R—Fl‘wy) —WH* n )\(\/’I;"- 1 +\/ﬁ)
TK2 K2
R’
<d WO - W] + 12
l1—a

5 - b
S (IZHW(O) — W”* + m,

MWET - p = M

where ¢ = S
TK



