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A. Some Basic Lemmas Used for Proofs
Lemma 3 Let δ1, · · · , δn be n random variables that are
from the Gaussian distribution N (0, σ). Given another se-
quence x1, · · · , xn which satisfies x2

1 + · · ·+x2
n = 1, define

a random variable v as

v =
1

φ

n∑
i=1

xiδi.

Then v follows a Gaussian distribution N (0, 1).
Lemma 4 Let x2 be a chi-squared random variable with k
degrees of freedom, then we have

Pr(x2 ≥ k + c) ≤ exp

(
−1

2

(
c− k ln

(
1 +

c

k

)))
,

where c is a positive constant.
The proofs of Lemma 3 and Lemma 4 can be found in

(Chen, Zhou, and Ye 2011). The proof of Lemma 1 can be
found in (Zhang et al. 2012).

Lemma 5 For any matrices Ŵ and W with the same size
d×m, we have

R∑
i=1

(σi(Ŵ)− σi(W))2 ≤ ‖Ŵ −W‖2∗. (11)

Lemma 6 Let r̄ be the rank of W̄. For any estimator Ŵ,
we have the following inequalities satisfied:∑
i∈F̄

I2(σi(Ŵ) ≥ τ) ≤ r̄, (12)

∑
i∈F̄c

I2(σi(Ŵ) ≥ τ) ≤ (R− r̄)
τ2

∑
i∈F̄c

(
σi(W̄)− σi(Ŵ)

)2

.

(13)
Lemma 5 and Lemma 6 reveals the inherent relationships

among I(σi(Ŵ) ≥ τ), σi(Ŵ) − σi(W), and ‖Ŵ −W‖2∗
for any estimator Ŵ.

B. Proofs in Section and Section
B.1 Proof of Lemma 2 For any non-negative integer r ≤
R, and matrices A ∈ Cr,d, B ∈ Cr,m, we can directly obtain
the following result with the equality held in Lemma 1:

‖W‖r+ =

r∑
i=1

σi(W) = max
A∈Cr,d,B∈Cr,m

tr(AWBT ).

Now we have to show maxA∈Cr,d,B∈Cr,m tr(AWBT ) =

tr
(
ÂWB̂T

)
. Actually, we have

tr
(
ÂWB̂T

)
= tr

(
(u1, · · · ,ur)TW(v1, · · · ,vr)

)
= tr

(
(u1, · · · ,ur)TUΣVT (v1, · · · ,vr)

)
= tr

(
(u1, · · · ,ur)TU

)
Σ
(
VT (v1, · · · ,vr)

)
= tr

((
Ir 0
0 0

)
Σ

(
Ir 0
0 0

))
= tr(diag([σ1(W), · · · , σr(W), 0, · · · , 0]))

=

r∑
i=1

‖σi(W)‖ = ‖W‖r+ ,

where Ir is a r × r identity matrix. Then we reach the con-
clusion.

Next, we show ‖W‖r+ is convex with respect to W and
the operator ‖·‖r+ is a norm. From the theorem 2.2 in (Chen,
Dong, and Chan 2013), we know that the function f(W) =∑R
i=1 ωiσi(W) is convex with respect to W if and only if

the weights ωi’s are decreasingly ordered by ω1 ≥ ω2 ≥
· · · ≥ ωR ≥ 0. For ‖W‖r+ , we can rewrite

‖W‖r+ = 1·σ1(W)+· · ·+1·σr(W)+0·σr+1(W)+0·σR(W),

where the decreasing order of the weights are satisfied.
Therefore, ‖W‖r+ is convex with respect to W. More-
over, for any matrix W, W1 and W2, we have: (1)
‖W‖r+ ≥ 0; (2) ‖W‖r+ = 0 if and only if W = 0;
(3) ‖cW‖r+ = |c|‖W‖r+ for any scalar c; (4) ‖W1 +
W2‖r+ ≤ ‖W1‖r+ + ‖W2‖r+ due to the convexity of
‖ · ‖r+ . By the definition of norm, we know that ‖ · ‖r+
is a norm, which completes the proof. �

B.2 Proof of Theorem 1 From Eq. (4), we have

1

mn

m∑
i=1

‖Xiŵi − yi‖22

≤ 1

mn

m∑
i=1

‖Xiwi − yi‖22 + λ‖W‖∗ − λ‖Ŵ‖∗

+ λtr
(
ÂtŴB̂T

t

)
− λtr

(
ÂtWB̂T

t

)
. (14)

Based on the property of the trace, we have

tr
(
ÂtWB̂T

t

)
= tr

(
WB̂T

t Ât

)
. (15)

Then, we have

1

mn

m∑
i=1

‖Xiŵi − f̄i‖22

≤ 1

mn

m∑
i=1

‖Xiwi − f̄i‖22 + λ(‖W‖∗ − ‖Ŵ‖∗)

+ λtr
(

(Ŵ −W)B̂T
t Ât

)
+

m∑
i=1

〈ŵi −wi,Xiδi〉. (16)

We first compute the upper bound of
∑m
i=1〈ŵi−wi,Xiδi〉.

Define a set of random events {Ai} as

Ai = {‖Xiδi‖2 ≤ λ} ,∀i ∈ Nm.

For each Ai, define a set of random variables {vij} as

vij =
1

φ

n∑
k=1

xijkδik, j ∈ Nd,

where xijk denotes the (j, k)-th entry of the data matrix Xi.
Since Xi is normalized, the diagonal elements of XT

i Xi are
ones, and thus {vi1, · · · , vid} are i.i.d. Gaussian variables
following N (0, 1) by Lemma 3. Then we can verify that∑d
j=1 v

2
ij is a chi-squared random variable with d degree of



freedom. By choosing λ according to Theorem 1, we have

Pr(
2

mn
‖Xiδi‖2 > λ) =Pr(

d∑
j=1

(

n∑
k=1

xijkδik)2 >
λ2m2n2

4
)

=Pr(

d∑
j=1

v2
ij > d+ c)

≤ exp(−1

2
µ2
d(c)),

where µd(c) =
√
c− d ln(1 + c

d ) and the last inequality
holds due to Lemma 4. Let A =

⋂m
i=1Ai and denote by Aci

the complement of each event Ai. It follows that

Pr(A) ≥ 1− Pr(

m⋃
i=1

Aci ) ≥ 1−m exp(−1

2
µ2
d(c)).

Under the eventA, we can derive a bound on
∑m
i=1〈ŵi−

wi,Xiδi〉 as
m∑
i=1

〈ŵi −wi,Xiδi〉 ≤
m∑
i=1

‖ŵi −wi‖2‖Xiδi‖2

≤λ
m∑
i=1

‖ŵi −wi‖2

≤
√
mλ‖Ŵ −W‖∗. (17)

Next, we examine the bound for the trace term
tr
(

(Ŵ −W)B̂T
t Ât

)
. By using Lemma 1, we have

λtr
(

(Ŵ −W)B̂T
t Ât

)
≤ λ

r+
l∑
i=1

σi(Ŵ −W)

= λ‖Ŵ −W‖
r+
l
. (18)

Combining Eq. (16), Eq. (17) and Eq. (18) together with the
fact that ‖W‖∗ − ‖Ŵ‖∗ ≤ ‖Ŵ −W‖∗, we can reach the
conclusion. �

B.3 Proof of Lemma 5 The conclusion can be reached by
the following steps as

R∑
i=1

(σi(Ŵ)− σi(W))2

=

R∑
i=1

σ2
i (Ŵ) +

R∑
i=1

σ2
i (W)−

R∑
i=1

2σi(Ŵ)σi(W)

= ‖Ŵ‖2F + ‖W‖2F − 2

R∑
i=1

σi(Ŵ)σi(W)

≤ ‖Ŵ‖2F + ‖W‖2F − 2tr(ŴTW)

= ‖Ŵ −W‖2F ≤ ‖Ŵ −W‖2∗,

where the inequality is due to the Von Neumann’s trace in-
equality. �

B.4 Proof of Lemma 6 For i ∈ F̄ , it is easy to see that∑
i∈F̄

I2(σi(Ŵ) ≥ τ) ≤ |F̄| = r̄. (19)

For i ∈ F̄c ∩ Ĝ, we have σi(W̄) = 0 and σi(Ŵ) < τ ,
therefore ∑

i∈F̄c∩Ĝ

I2(σi(Ŵ) ≥ τ)

= 0

≤ |F̄
c ∩ Ĝ|
τ2

∑
i∈F̄c∩Ĝ

(
σi(W̄)− σi(Ŵ)

)2

.

(20)

For i ∈ F̄c ∩ Ĝc, we have σi(W̄) = 0 and σi(Ŵ) ≥ τ ,
therefore we also have∑

i∈F̄c∩Ĝc

I2(σi(Ŵ) ≥ τ)

≤ |F̄c ∩ Ĝc|

≤ |F̄
c ∩ Ĝc|
τ2

∑
i∈F̄c∩Ĝ

(
σi(W̄)− σi(Ŵ)

)2

.

(21)

Combing Eqs. (19)-(21), we reach the conclusion. �

B.5 Proof of Theorem 2 Let W = W̄ and set ∆ = Ŵ−
W̄. By Assumption 1, we have

κ2‖Ŵ − W̄‖2∗ ≤
1

mn
‖XD(Ŵ)−D(F̄)‖2F . (22)

Let λ(l)
i = λI(σi(Ŵ(l)

? ) ≥ τ), we can rewrite the last
term in Eq. (9) as

λ‖Ŵ − W̄‖
r+
l

=

R∑
i=1

λ
(l)
i σi(Ŵ − W̄)

= λ

R∑
i=1

I(σi(Ŵ(l)
? ) ≥ τ)σi(Ŵ − W̄)

= λ
∑
i∈F̄

I(σi(Ŵ(l)
? ) ≥ τ)σi(Ŵ − W̄)

+ λ
∑
i∈F̄c

I(σi(Ŵ(l)
? ) ≥ τ)σi(Ŵ − W̄). (23)

By combining Lemmas 5 and 6 with Eq. (23), we have

λ‖Ŵ − W̄‖
r+
l

≤ λ

√√√√
r̄ +

R− r̄
∑
i∈F̄c

(
σi(W̄)− σi(Ŵ(l)

? )
)2

τ2

√
‖Ŵ − W̄‖2F

≤
(
λ
√
r̄ +

λ
√
R− r̄
τ

‖Ŵ(l)
? − W̄‖∗

)
‖Ŵ − W̄‖F

≤
(
λ
√
r̄ +

λ
√
R− r̄
τ

‖Ŵ(l)
? − W̄‖∗

)
‖Ŵ − W̄‖∗,

(24)
where the first inequality holds due to the Cauchy-Schwarz
inequality and Lemma 6, and the second inequality is due to
Lemma 5 and a fact that

√
a2 + b2 ≤ a+ b for all a, b ≥ 0.

Now, by substituting Eq. (24) into Eq. (9) and combining



Eq. (22), we obtain

‖Ŵ(l+1)
? − W̄‖∗

≤ λ
√
R− r̄
τκ2

‖Ŵ(l)
? − W̄‖∗ +

λ(
√
r̄ + 1 +

√
m)

κ2

≤ al‖Ŵ(0) − W̄‖∗ + b
1− al

1− a

≤ al‖Ŵ(0) − W̄‖∗ +
b

1− a ,

where a = λ
√
R−r̄
τκ2 < 1, b = λ(

√
r̄+1+

√
m)

κ2 . �


