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Abstract—Locally weighted learning (LWL), which is an
effectual and flexible method for prediction problems, is
widely used in many regression scenarios. The training data
samples, referring to the history experience knowledge base,
are required to help do regression by new queries. However,
sometimes, the knowledge base tends to be helpless due to the
lake of information, such as inadequate training data. In such
cases, traditional locally weighted learning will be powerless
due to less history or inappropriate experience if there are
not an adaptive mechanism or other learning methods like
knowledge transfer to assistant. In this paper, we propose
an adaptive transfer learning mechanism to assistant LWL
to do prediction. As there are many auxiliary training sets,
we assign different optimal local models to take each training
set as the learning basic, and combine those models into an
integrated one adaptively to give the final prediction value
by allocating weights for each model dynamically with the
feedback prediction error. Importantly, this learning process is
assigned for multi-domain knowledge bases transference and
multi-locally-weighted-model integration. Moreover, we also
give an analysis about how the selection of additional training
domains affects the regression result. Experimental studies are
based on climate data which contains the monthly average of
global land air temperature from 1901 to 2002 on grids divided
by 0.5 latitude and 0.5 longitude. Knowledge transfer is taken
out from neighbor grids to a center. The results show that our
mechanism performs much better than traditional LWL.

Keywords-Locally Weighted Learning; Transfer Learning;
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I. INTRODUCTION

We focus on transfer learning when the original source

domain is unsatisfied with the demand of calculations in

test domain, and the learning process needs more knowledge

from additional training dataset that are different but related

with the test domain. The motivation is obvious that when

we face with a new challengeable difficult, we first attempt

to gain help from the similar scenario that have already

been solved in our experience, which is actually attributed to

the artificial intelligent learning mechanism. This knowledge

transfer conception has already taken place in clustering

and labeling where transfer learning begins to show its

superiority [1][2].

As the same with the conception above, we transfer this

transfer learning from clustering to lazy learning for local

regression. Lazy learning is a learning method in which gen-

eralization beyond the training data is delayed until a query

comes as opposed to in eager learning where the system tries

to generalize the training data before receiving queries, and

wins the favor in some learning problems such as prediction.

A typical lazy learning method is locally weighted learning

(LWL) which contains some flexible parts such as parameter

selection. Widely used parameter selection methods are,

for example, Global Bandwidth Selection(GBS), providing

a global optimal bandwidth to show its simplicity and

universality, and Query-based Bandwidth Selection(QBS),

using a bandwidth associated with each query point that will

allow rapid or asymmetric changes in the behavior of the

data. For lazy learning, the training set is the most important

part because such lazy behavior completely depends on

the abundant memory as a strong supporter. Unfortunately,

in some cases, this knowledge memory is not that strong

and even poor to support lazy learning due to the lack

of information such as inadequate training data and new

queries. Especially, traditional lazy learning method work

well only when the training and testing data are drawn from

a same data source and feature space. Once there comes

a new query and the training memory is accumulated from

similar but different data source, the learning model has to be

rebuilt which is expensive or even impossible. In such cases,

traditional locally weighted learning will lose its ability and

some adaptive strategies should be introduced to assistant

regression. Some related work in [3][4] focus on adaption

to make LWL more robust, but those mechanisms talk about

how to select optimal model parameters on the premise that

there are abundant helpful training samples.

To overcome those difficulties described above, transfer

learning should be introduced to LWL to help knowledge

transfer from similar source domains to the test domain.

In this paper, we propose an adaptive transfer learning

mechanism based on locally weighted learning. For the lack

of training samples, we take the similar training domains,

which are abundant for normal local regression, as the
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auxiliary knowledge. We notice that there are usually many

different local models available such as constant, linear

or quadratic model. Each model has their own advantages

in different learning scenarios, and it is definite that no

single model can perform well globally. Especially, even

for the same type of the models, dissimilar parameters will

lead to significant differences in regression results [3][4].

This makes different optimal local models suit for different

training domains. Under a transformation background, we

hope that all of the models can play its advantages in their

compatible regions. A directly way is that we can create

optimal models for each training domain with the same

query come from the test domain and mix all the models

together by averaging weighted mechanism. Instead of a

global selection to give each model a fixed weight before

local regression, we use a local way to allocate the weights

adaptively by tuning the weights with the regression error.

Moreover, we pay much attention on how the selection of

additional training domains will affect the final integrated

model. In line with this philosophy, we take an experiment

to test the effectiveness of the integrated model with the

increasing number of additional training domains and draw

an explicit analysis.

The main contributions of this paper are: (1) as different

from former transfer learning application in discrete clus-

tering or labeling, we combine this conception with lazy

learning method for continuous regression and demonstrate

its superiority in real climate dataset; (2) according with

the transfer knowledge, we create multi-models for the

knowledge domains and mix the models together; (3) by

using the feedback regression errors, we allocate the weights

of each model adaptively when we focus on a certain test

domain; (4) we also give an analysis about how the selection

of training domains effects the regression result.

The rest paragraphs are organized as follows. The sec-

ond part gives preliminaries. Section three talks about the

methodology of adaptive knowledge transfer via LWL. Ex-

perimental studies are implemented in the fourth part. The

last section gives a conclusion.

II. PRELIMINARIES

A. Locally Weighted Learning

The standard formation of locally weighted learning can

be represented as:

ŷ = f(q) + ε (1)

Where q is the input query, and ŷ the prediction output

of q. f() is the regression model, with various types such

as constant, linear and quadratic style. A kernel function,

involved in f() and includes two parameters known as

bandwidth h and number of neighbors K, calculates the

weights of neighbors of input q.

As the complexity of the quadratic formation, we take

constant model and linear model as a illustration. A constant

model can be represented as an averaging weighted equation:

ŷ =

∑K
i yi ·G(xi,qh )

∑K
i G(d(xi,q)h )

(2)

where xi and yi are the sample input and output respectively.

G() is a kernel function. h is a fit parameter called band-

width which controls neighborhood scale and can be selected

by many methods such as Global Bandwidth Selection

(GBS) and Query-based Bandwidth Selection (QBS) [5].

For a linear model,

Y = βX (3)

the training inputs and outputs are formalized in input matrix

X and output matrix Y. β is the parameter matrix here [6][7].

B. Transfer Learning

Knowledge transfer happens when there are a source

domain with less training samples and a test domain with

the same feature space and same distribution as the former.

However, some other source domains with the similar but not

same feature space are abundant. To assistant the learning

work, knowledge should be transferred from the abundant

similar source domain to the test domain. A transfer learning

problem is often represented as:

Given a source domain DS , and learning domain TS , a

test domain DT and learning task TT , transfer learning

aims to help improve the learning of the target predictive

function fT () in DT using the knowledge in DS and TS ,

where DS �= DT , or TS �= TT [8].

In many machine learning problems, the traditional lean-

ing methods often face the difficulties described above.

Beside the clustering and labelling problems, lazy learning

often needs some assistant leaning mechanism to overcome

such embarrassing situation similarly. Thus, we focus on

the cooperation of transfer learning and LWL. A detailed

discussion will be given in the following section.

III. KNOWLEDGE TRANSFER VIA LWL

To do knowledge transfer, we first need the training

domains and test domain. We can draw this scheme in a

2D plate in Table. I. The center region Dc is considered as

the combination of learning domain TS and test domain DT

from where queries come. Due to the weak training samples

in TS , it is difficult to create a local model Mc to do accurate

regression for queries from Dc without assistant knowledge

base. Therefore, we need additional training domains having

the similar features with the center domain Dc, which

appear here as the neighbors Di to Dj (the source domains

DS). To transfer the knowledge from the neighbor domains,

we create optimal models for them to do regressions(the

learning task TT ).

Without considering the knowledge transfer firstly, the re-

gression of the focused center region Dc can be represented
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Table I
KNOWLEDGE DOMAINS FOR TRANSFERRING

(Di,Mi) ... ...

... (Dc,Mc) ...

... ... (Dj ,Mj)

as:

ŷtc = f(q,Mc) (4)

where Mc is the optimal model created for Dc. Then, we

assume that there are N neighbor regions are similar with

the center Dc, taken a example from Table. I. Those regions

are the assistant training domains. When we transfer the

knowledge from neighbor regions to Dc for the same query

q, optimal models will be created for each neighbor region.

Then we can get N models based on different training

domain and a same query. The regression model for each

training domain can be therefore represented as:

ŷic = f(q,Mi, Di) (5)

Thus, the prediction error of each model is:

ec = |ŷc − yc| (6)

ei = |ŷic − yc| (7)

To combine all the models, ŷtc and each ŷic have to

be weighted and contribute to the final prediction as an

averaging weighted formation:

ŷc =
wc · ŷtc +

∑
wi · ŷic

wc +
∑

wi
(8)

A. Adaptive Weights Allocation for Training Domains

Let wc be the weight of model created on TS and wi

be the weight of model created on Di, we assign wc and

wi with the prediction errors ec and ei dynamically. To

explain the motivation, we consider a practical climate data

background and aim to predict the temperature of a given

local regions using knowledge transfer based on LWL. The

region from where the queries come is considered as the

test domain. Besides the training samples from the centre

region, there must be several neighbor regions holding the

similar climate features, and those regions will be treated

as the training domains. We aim to transfer the neighbors’

knowledge to the center, thus we allocate the weights of

each model in those regions dynamically with each model’s

prediction error. As being geographic information, climate

has its spatial-temporal feature that the changes over time or

Table II
VARIABLES DESCRIPTION

Dc The centre domain
TS The learning domain with the same origin as queries,

TS ⊂ Dc

DT Test domain, DT ⊂ Dc, DT ∪ TS = Dc

q A vector denotes the given sequence of queries which
come from DT .

l The length of q.
qk The kth query in q.
j Number of selected neighbor domains.
ŷc The output prediction result.
h A parameter in the kernel function of a local model.

[hmin, hmax] Adjustment interval for h.
w Weight vector for the neighbor domains.
wi An element in w.

ykc The real output of qk .
ŷtc Prediction of the model created on TS .

ŷic Prediction of the model created on Di.
ec Error of the model created on Dt

c.
G() Kernel function, a Gaussian Kernel here

G(x) = 2.718−x.
wc Weight of Dt

c.
e Error vector for the neighbor domains.

space are continues. That means the neighbor regions of the

center or during narrow time duration, the climate features

remain similar. So allocating weights with the prediction

errors is not a lag to catch up with the changes, but an

accommodation with the continuous variation. This is the

essential motivation of the adaption.

Consequently, we take such adaption, and the weight of

each model is proportional to the difference between its

prediction result and real output:

wc ∝ |ec| = |ŷtc − yc| (9)

wi ∝ |ei| = |ŷic − yc| (10)

where yc is the real output. Incorporated into a kernel

function, the weights can be outlined in equations:

wc = G(ec) (11)

wi = G(ei) (12)

where G() use a Gaussian Kernel G(x) = e−x here.

B. Algorithm Description

Table. II gives the explanation of the variables used in

this paper. The main conception of the knowledge transfer is

summarized in Algorithm 1. We first provide the regression

with the queries from a centre domain Dc and the training

domains including the centre training domain TS and the

neighbor domains D1, · · · , Dj . After the initialization of

model set and parameters, we train the optimal model and

parameters for each training domain. In the regression part,

for each query, we first select an optimal model for TS ,

and calculate its prediction error. Then, optimal models are

selected for each neighbor domains and we can finally get
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an error vector e. By the end of each round of a query, the

weight vector w will be updated by the error vector e. Then

the adjustment with the feedback errors will take effects in

the next round of regression.

Importantly, how to choose the neighbor domains is nec-

essary and very important. The choice of the assistant knowl-

edge base affects the effectiveness of the integrated model

significantly. To analyze the correlation between knowledge

domain selection and the effectiveness, we change the

number of neighbor domains increasingly and implement

Algorithm 1 in pace with the changes. Results are shown in

the following section.

Algorithm 1 : Knowledge Transfer via LWL

Input:
(1) A sequence of given queries q = [q1, . . . , ql] form a centre

domain Dc

(2) A centre training set TS from Dc and j neighbor training sets
D1, · · · , Dj

Output:
The output prediction vector ŷc of the given queries.
Algorithm:
1. Initialization:
(1) Initial the model selection set with constant model, linear model

and quadratic model.
(2) Given the model parameters a range to adjust such as Interval

[hmin, hmax] for bandwidth h.
(3) Assign the weight vector w = [w1, , wj], w1 = · · · = wj = 1.
2. Training:
Train optimal model and parameters for each training set Di and
centre Dc.
3. Regression:
For each query qk

· Do regression by selecting the optimal model and parameters
for qk using the centre training set TS , and get ŷt

c.
· Calculate the prediction error ec = |yk

c − ŷt
c|, and the weight

for TS , wc = G(ec).
· For each neighbor training set Di

· Select the optimal model for qk with Di and get ŷi
c.

· Calculate the prediction error ei = |yk
c − ŷi

c|.
· Make the final prediction by weighting ŷi

c with wi,
ŷc = (wc · ŷt

c +
∑

wi · ŷi
c)/(wc +

∑
wi).

· Adjust w by the current round of e.
· For each wi

· Update the weights wc = G(ec), wi = G(ei).
4. Return.

IV. EXPERIMENTS

A. Data Source

This section talks about experimental studies. The data

used in the experiments are from Climatic Research Unit

(CRU TS 2.0), Tyndall Centre [9]. It contains the monthly

average of global land air temperature from 1901 to 2002 on

grids divided by 0.5 latitude and 0.5 longitude. Thus, there

are 102×12 samples in a grid. To construct a query sequence

for testing, we choose the samples from 1991 to 2002 as

the queries and others as training samples (a query will be

added to the training set after its prediction has done). We

take the grid, at where Beijing locates, as the focused centre

domain (Latitude: 39◦54′50′′N, Longitude: 116◦23′30′′E).

Grids nearby are selected as the neighbor domains.

To confirm the neighborhood, we first use KNN clustering

method to generate a cluster with similar temperature for

the centre domain. This step just gives a rough partition of

the spatial neighborhoods which are clustered on the whole

training samples. Thus, once clustered, the rough neigh-

borhoods will be available for any queries from different

grids within a certain time interval. The clusters have to

be updated until the spatial feature changes considerably.

The result of clustering is shown in Table. III where Dc is

the centre domain, 1 denotes the neighborhood and 0 the

irrelevant grids. Thus, we can select the training domains

from those grids labeled 1.

Table III
SPATIAL GRIDS

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 1 1 1

0 0 1 1 Dc 1 1

0 0 1 1 1 1 1

1 1 1 1 1 1 1

0 1 1 1 1 1 0

0 0 0 0 0 0 0

B. Performance Evaluation

Instead of attempting to find the most beneficial grids, we

select the nearest four from the cluster of centre domain,

highlighted in Table. III, as the additional training domains

to assistant the prediction. The reasons why we concentrated

on these four grids are explained as following. Figure. 1

and Table. IV give the comparison of Knowledge Transfer

via LWL (KTLWL), LWL with Global Bandwidth Selection

(GBS) and LWL with Query-based Bandwidth Selection

(QBS). The horizontal coordinates of Figure. 1 denote the

testing years 1991∼2002, and the longitudinal coordinates

denote the mean error of all prediction errors in the cor-

responding year. Because the monthly average temperature

of the centre region (Beijing, China) ranges from −9◦C to

29◦C, it is difficult to use Mean Relative Error, especially

when the actual value approximates zero. Thus, we directly

use the Mean Absolute Error measured in Degree Celsius

which is understandable.

Table IV
A COMPARISON OF PREDICTION MEAN ERROR OF ALL THE QUERIES

Methods LWL with GBS LWL with QBS KTLWL
Mean Error of
all the queries 1.23 1.15 0.93

(Degree Celsius)
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Figure 1. Comparison of Absolute Mean Errors.

Figure 2. Relationship of Assistant Training Domain Selection and The
Effectiveness of Integrated Model.

From the figure and table, we can easily find that knowl-

edge transfer from neighbor domains to assistant LWL is

necessary and this integrated model performs much better

than the traditional locally weighted learning. However, it

can also be found from Figure. 1 that at the 8th query,

KTLWL does not take any advantages than the other two

methods. This is mainly because the good quality of the

learning domain TS in Dc. In this case, the training samples

in the centre domain have the ability to provide abundant

helpful information that even if knowledge transfer does not

take place, the regression with traditional LWL will also

performs well. Actually, this scenario is not belong to the

description of transfer learning.

Then, we come to explain the reason of the selection

of the four nearest grids. We concern our methodology

with a question that how the selection of additional training

domains affects the integrated model. To catch up with this

consideration, we take an experiment to detect the relation-

ship between training domain selection and the effectiveness

of the integrated model. Figure. 2 shows the relationship

curve. We run the KTLWL on the increasing number of

assistant training domains in the cluster, and x = 1, 2, · · ·,

at the horizontal coordinates means that the vertical value at

x is an average prediction value of all possible combinations

of the nearest x neighbor domains limited by the cluster.

From the curve we find that as the increasing of assistant

training domains, the integrated model will firstly improve

its performance. But when the assistant training domains

increase to a certain scale, the integrated model will not

take any more improvement and even get worse. The reason

of this property can be explained by the local similarity.

Due to the inadequate knowledge in the centre learning

domain, with the increasing of nearest similar training do-

mains, the helpful knowledge become richer thus lead to the

performance improvement. But when the training domains

continuously expand, the knowledge in the newly selected

domains are helpless because the further the knowledge

domain from the center, the less similar the features they

share, even some bad knowledge will participate in the

regression to interfere. So as the neighbor training domains

expanding, the performance of the integrated model will first

improve and finally keep stationary or even begin to get

worse.

V. CONCLUSION

This paper proposes an adaptive knowledge transfer mech-

anism based on locally weighted learning. After the state-

ment of the scenarios that some lazy learning method need

knowledge transfer to assistant, a conception of combination

of locally weighted learning and transfer learning is ad-

vanced. Then we concentrated on multi-domain knowledge

transferring and create optimal models for each assistant

training domain to finally get an integrated model. An

adaptive updating mechanism is introduced into the com-

bination of multiply models that we assign the weights of

each model dynamically with the feedback regression errors.

Importantly, we also give an analysis about the relationship

between the training domain selection and the effectiveness

of the integrated model and explain the phenomenon that

as the increasing of training domains, the performance of

the integrated model will first improve and finally keep

stationary or even begin to get worse. Experimental studies

are assigned to demonstrate the superiority and necessity

of knowledge transfer in locally weighted learning and to

analyze how the selection of additional training domains

affects the integrated model. The results provide a convictive

proof of our approach.
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