Supplementary Material for ‘Reduction
Techniques for Graph-based Convex
Clustering’

Proofs
The Lagrangian Dual of TCC

Consider problem (5). Let Y =
grangian function is

X — ]5B, and the La-

1 ~ o~
L(Y,B;A0) = _|[Y||7 + A[WB||1,, + (A®,X - DB - Y)

1 ~ ~
= 5IIY[7 + (A0, X~ Y) — (\®,DB) + A|[WB|1,4, (20)

where A\@ € R"*? is the Lagrangian multiplier. To find the
dual, we need to solve the following problems:

min /1Y) = 3 Y]} - (0@, Y),
minfg(B) =

afl(Y)

—(A\®,DB) + A\|WB]|,,.

= 0, we obtain

Y = )\6.

By setting

Therefore,

min f1(Y) = fi(Y") = -5

F

Consider f5(B). Let 3, be the rth row of B. The optimality
condition is

0 e 8f2(,37") =
= —Ad,© + 2w, 9| Br|lq,

“A[D7®] +xwd|B, .

where r <> (i, j), i.e. the rth row of B corresponds to the

data pair (i, ), and d, is the rth row of D The above sub-
gradient leads to

ar@ = WrVr, Vp € 8”/87‘Hq 2D
By noting that
<V1"7/37“> = Hﬂ'r'Hq:

we have
(40,8 ) = w8
Thus we can see that
0 = min f2(Br).
Eq. (21) implies that
d,®c wy By,

where ¢ = - —L+ and By is the unit {5 ball in RP. Combining
all the derivations above, the dual of problem (5) is
~ |12

— [I1X[% :
F

Swr,i:1,~~~7n—l}.
q

The Lagrangian Dual of CGCC
Let Z = CA € R™*P, then the Lagrangian is

1 — ~
L(Z, A;2®) = | A = X[} + M[WZ|1, + (2@, CA — Z)

1 ~ —~
=5lIA =Xz + (\®,Ca) - A\, Z) + A|[WZ[1q, (22)

where A® € R"*P is the Lagrangian multiplier. We solve
the following subproblems:

min f1(A)
min f2(2) =

dfl

1 ~
= 5IA = X[l + (A®,CA),
—(A®,Z) + \|[WZ|1,,.

(A) = 0, we obtain

A" =X - \CTa.

By setting

Therefore,

2 ~ ~ ~
min f1(A) = 3 [C7 @[3 + (A2, (X - AT @)

~ >\2 ~T 2
— \®,CX) - o |C 2]}
Consider f(Z). Note that f5(Z) can be decomposed into m
subproblems corresponding to the rows of Z:

Hzlian(ZT) = —<A¢7~,ZT> + Aib"’“HZTqu r= 13 s, M.

Now, the optimality condition is
0 € 0f2(zr) = =A@y + AW, 0| zr g,
which leads to
br = Vr, Vr € W02 ]|q (23)

By noting that

(Ve Zr) = Wrl|Z,|[q,
we have

(@r,2zr) = wWr0|zr|q-
Thus we can see that

0= n;in fa(zr).

Moreover, Eq. (23) implies that
¢T S ﬁ;TBQa

Combining all the derivations above, the dual problem of the
CGCC problem in (1) is

. NMars, X
m;n{g(i’) 5 C <I>7X

2
—IX|F: llprlls <1, 7 =1, ,m}-
F

Proof of Lemma 1

We prove the statement by contradiction. Since each row of
C denotes one edge in E, for the rth row ¢, according
to the edge (¢, j) in E, we represent r <> (i,j). Assume
that C is rank-deficient, then there exist at least one row
¢y, such that c,, can be linearly represented by the resid-
ual n — 2 rows, i.e., ¢, = Zk,;ék ak/Cr,,, Where ay:’s are
scalars. Then we must have iy, € {ig }rr£p U { i b2 and
jk S {ik’}k/;ﬁk @] {jk/}k’;ék, where Tk <> (ik,jk), because
there are only two non-zero elements at the ith and jth po-
sition for one row c,. In other words, node 75 and node jy,
are connected via another path instead of (i, j ), therefore,
there exists a ring in 7", which contradicts the fact that 7™ is
atree. O



Proof of Lemma 2

From the definition of C, it is easy to verify that 1,, is or-
thogonal to all the rows in C, therefore rank(D) = n and
D is invertible. 0

Proof of Theorem 1

As mentioned previously, (i)<(ii) is obvious. Then we show
(i)&<(iii). We first prove (ii)=-(iii). Assume (ii) is satisfied,
then from the KKT condition in Eq. (7), we have DB* = 0.
Assume B* # 0, it must be that the value of the objec-
tive function in problem (5) satisfies h(0) > h(B*), i.e.
X% > 1X|% + Al[WB*||1,4, which is impossible.
Therefore, we have B* = 0. The converse (iii)=>(ii) can be
easily verified.

Useful Lemmas

Lemma 4. (Ruszczyriski 2006; Bauschke and Combettes
2011) For a closed convex set S € R"*P and a pointu € S,
the normal cone to 8 at u is defined by

Ns(u)={v:(v,u —u) <0,vu’ € S}. (24)
Denote by

Ps(u) = arg min |[u—u'||p.
u’'es

Then, the following statements hold: (i) N's(u) = {v :
Ps(u+v) =u}; (i) Ps(u+v) = u Vv € Ng(u);
(iii) Fforu ¢ S, u = Ps(u) & u—u e Ns(u).

Lemma 5. (Nesterov 2004) For any convex constrained op-
timization problem:

min f(X), (25)

Xes

where 8 is convex and closed set and f(-) is convex and
differentiable. X* € 8 is an optimal solution of Eq. (25) if
and only if

—f'(X*) e Ns(X7). (26)

Lemma 6. Let n()\') be defined in Theorem 2 for any N <
Amax and q € {1,2, 00}, we have n(\') € N z(©*(\)).
Proof: We prove the case when ¢ = ¢ = 2, and other
cases can be proved in a similar way. We first discuss the
condition that X < Ap,qe. When N < A4, from Theorem

1 we know = & F. Therefore,

N
X X)_X

From condition (iii) in Lemma 4, we have

X *
T @) EN RO (V).
Next, we consider N = Apax. From Theorem 1, we have
©*(X) = £ € F. Now we have to show

r, X X
* N - <
<d*d )\max,(a )\max> <0,V0O € F,

which is equivalent to

<§*X,d*® d*X> <0,VO e F.
From the definition of d.., we have
X _ w, = max{w,}'_}.
AIH&X
Recall the definition of J, where
.7'-7»2{("3:‘~7 7§w7.},r:1,---,n—1.
q

Then we have
<f\l*X,d*® - g*x> = <d*X,d*G)> —w?

|d. O, —w?

which completes the proof. ]

Proof of Theorem 2

We prove the case when ¢ = ¢ = 2, and other cases can be
proved in a similar way. The statement in Eq. (9) is equiva-
lent to

@ () — e W) < <(9*(A)-@*(X),vL

I <

(AN)). @D
We will show Eq. (27) holds. From Lemma 4 and Lemma 6,
we have

(n(\),® -©"(X\)) <0, VO € F. (28)

By letting ® = ©*()\) and ® = 0, we can obtain the fol-
lowing results respectively:

(n(X),©" (1) —©" (X)) <0, (29)

(n(V),X) >0, N = A,
X[ / T\ 30)
TF 2 ||@*()\)||F, if A <)\max~

Moreover, from Lemma 6, we also have

% @' (\) € N (O ().

Then, we have
<}§®*(A),®*()\’)®*(>\)> <0. 31
Eq. (31) is equivalent to

[©°(\) — 12 < (0" (2) - @ (N),v(\ X)) (32)
Cor_nparing Eq. (32) with Eq. (27), we consider Eq. (27)

again:
< “(A) — @ (\), vE (A, A )>
=(0"(\) = ©"(X),v(\, X))
<®*(,\) e (\),v(\,\) —
= (@ (V) - O "(\),v(\, X))

(S
C) @y, YN )
-(or - oo BEEEh00)

Vi)



Based on Eq. (33), recall Eq. (29) and we know that if
(v(\, A),n(N\)) > 0, we can prove the theorem. Actually,
we have

vOx >_<—e( ), (A'>>
_ (% _%> <>~<,n(x>>+<;, —em (), <A’>>.

If M = Apax, recall the first statement in Eq. (30) and A\ <
X, it is easy to see that

(34 () 20

If ' < Amax, from the second statement in Eq. (30), we also

have
e ’ _ e X * /!
<X,n(/\ )> = <x, S-ei )>
X2 < iy
> e % er ()
>0

Now the last thing is to show that

<§ -e"(\), (A’)> > 0. (34)

Eq. (34) is obvious, since

i ’ _ O, if )\l = )\ma:n
<>\/_® (A) (/\ )> - { ||n(/\')|\%, lf)\/ <>\max-
Finally, we reach the conclusion. U

Proof of Theorem 3

From the feasible region O in Eq. (10), for any ® € O we
can write

© =o(\N)+ X, [Xllr < R(\N).

Therefore, if ¢ = 1, i.e. ¢ = 0o, we have

sup = sup d,.o(\, N) + aTTH
©co Lo IXs<RAN) 1
= [drotr X)|| + RO X2,
1

else if ¢ = 2, i.e. ¢ = 2, we have

sup d, e = sup aro()\,/\/)—}—aTTH
©co 2 IXlIp<RON) 2
= [drotr X)|| + ROV X 2,
2

else if § = o0, i.e. ¢ = 1, we have

sup sup aro()\, )+ ETTH
©co TSRO o0
= [drorx )|+ ROV 2,

where the supreme values can be obtained directly by
Cauchy inequality and norm inequalities. From these
supreme values, we can directly reach the conclusion. 0

Proof of Lemma 3
Because the graph G in CGCC model is a cyclic graph, there
exists at least one ring in E¢. Recall that we require G to be
connected graph. Therefore, if there exist rings in E¢, we
must have that the cardinality |E¢|=m >n >n — 1.
Moreover, from the proof of Lemma 1, we know that if
a ring exists in E¢, there must exist one row of C that can
be linearly represented by some other rows. For any m > n,

there exists at least one ring in E¢, therefore, C < n is rank-
deficient. O

Proof of Theorem 4

The proofs can be completed by following those of Theorem
1. ]

Proof of Theorem 5

We prove the case when ¢ = ¢ = 2, and other cases can
be proved in a similar way. When ' < Ap., Eq. (19) is
equivalent to

HAF(A) CATB(N) i

< <A$*(A) ZATT V), VO, A’)> .
(35)

We will show Eq. (35) holds. Note that when \' < Apax.
AR(N) = —T' (®*). From Lemma 5, we have

<ﬁ(X), AT — AE*(X)> <0, V® e F. (36)

By letting @ = & (\) and ® = 0, we can obtain the fol-
lowing results respectively:

<H(X) AT ()) - AE*(A’)> <0, 37)

IA~ “F > [|A®T(X)|r, (38)

Moreover, from Lemma 5, we also have

“R@ () = % D2 (\) e N=(@ ().
Then, we have
(F-DFwEFw-Fw)<o @

Eq. (39) is equivalent to

|7 () - A% (x) i

< <A¥*(A) — AT (\),¥(\, X)> .
(40)

Cor_nparing Eq. (40) with Eq. (35), we consider Eq. (35)
again:

<A§*(A) “ATT(V), T, X)>
- <A6*(A) — AT (\), (), /\’)>
- <A6*(A) CABT(N), T N) — v, A’)>
AT (\) — AT (V), V() X)>

- <A$*(A) L ATV, Wm’» @1)



Based on Eq. (41), recall Eq. (37) and we know that if
(F(\, X)), (X)) > 0, we can prove the theorem. Actually,
we have

(FOLX),B(N)) = < ALY AE*(X),ﬁ(X)>

_ l_i, AT, 50 + (A Y AT ).a0)).
A A

From Eq. (38), we have

(A, 5(\)) = < v AY AE*(X)>
AT

v AT AT () e

> 0.

Now the last thing is to show that

—1N7
<AXY - A5*<A’)7ﬁ(A’>> > 0. 42)

Eq. (42) is obvious, since

Ail? TR NI\ —/ —
(A5 - A% ).m) ) = ) >
Now we complete the proof. 0

Details for Definition 1
Let O be the feasible region constructed from Egs. (19):

ONN)={2(\) : |[A2(N) —o(\,\)|lr < RN N)}.
43)
We have to estimate the following supreme values:
sup {[[@,lz - ® € O, =1, ,m}, (44)
Let 2 = A®. The problem becomes
sup {[|¢Ellq : AT'E€O, r=1,---,m}, (45

where ¢, is the rth row of A~!. The supreme values in Eq.
(45) can be obtained exactly from the proof of Theorem 3.
O

Analysis for §

The parameter J in problem (18) plays an important role,
since A\pax depends on the value of §. When § is very small,
computing Ay, may be numerically unstable but when §
is large, the relaxed dual form will have a large deviation
from the original one, leading to an inaccurate estimation for
Amax- However, since the CGCC problem is convex prob-
lem, there exist a certain value of A} . that will guarantee
all the data points are clustered. Therefore, In the implemen-
tation of the Cigar rules, we propose to empirically find the
maximum value A% first, and then choose an appropriate
0 such that the induced Amax satisfes that Ayax is close to
Afax DUt AL - < Amax, Which makes the condition in Theo-
rem 1 satisfied. Empirically, we can assign a relatively large
initial value to § which will induce a small Ay ax and then

decrease § gradually until A}, < Anax is satisfied.

max

Efficient Ways for Computing The Matrices Used
in The Cigar Rule

When the number of rows in C is large, e.g. the CC problem
with fully connected graph m = n(";l) , calculating the in-
verse of D € R™*™ directly is infeasible. However, from
the definition of D, we have the following efficient way to

compute D
—1
=-1 —=T -1 C C
D f(cc +6I) = <ffﬂ>
i, c(,cc)y
4 Ve V6o V6
where éTé € R™*™ and the matrix inverse can be com-

pleted efficiently. The square root matrices A and A~!
be obtained by the eigen-decomposition technique from ma-

trices DorD

Additional Experimental Results

Fig. 5 shows the /5 clusterpath generated from the TCC and
CGCC models on the two synthetic datasets when n = 200.
According to the results, we can see that all the models can
correctly detect the cluster. Figs. 6 and 7, Tables 4 and 5
provide the additional experimental results on the synthetic

data where n = 1000.
:i T -

(d) Splral

(a) Halfmoon (b) Halfmoon

(©) Splral

Figure 6: The performance of the Eater rule on synthetic data
(n=1000).

Table 4: Running Time (seconds). E+S denotes the total time cost
of using the Eater rule and the solver.
Data Solver Eater E+S  Speedup
halfmoon (n=1000) | 1495.6 4.1 288.7 5.2
spiral (n=1000) 3563.5 4.3 804.1 44

Table 5: Running Time (seconds). C+S means the total time cost
of using the Cigar rule and the solver.

Data Model Solver  Cigar C+S Speedup

Halfmoon | CGCC-1 | 3867.8  149.7 7227 54

(n=1000) | CGCC-2 | 4709.7 301.1 10284 4.6
Spiral CGCC-1 | 10314.8 1643 2349.8 4.4
(n=1000) | CGCC-2 | 127352 3384 31784 4.0




(a) TCC (b) CGCC-1 (c) CGCC-2 (d) TCC (e) CGCC-1 (f) CGCC-2
Figure 5: > clusterpath generated by the GCC models on the synthetic datasets. (a)-(c): halfmoon data (n=200); (d)-(f) spiral data (n=200).
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Figure 7: The performance of the Cigar rule on synthetic data (n=1000). The first and second rows denote the results on the halfmoon and
spiral dataset respectively.



