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ABSTRACT
In multi-task learning (MTL), multiple related tasks are learned
jointly by sharing information according to task relations. One
promising approach is to utilize the given tree structure, which
describes the hierarchical relations among tasks, to learn model
parameters under the regularization framework. However, such a
priori information is rarely available in most applications. To the
best of our knowledge, there is no work to learn the tree structure
among tasks and model parameters simultaneously under the reg-
ularization framework and in this paper, we develop a TAsk Tree
(TAT) model for MTL to achieve this. By specifying the number of
layers in the tree as H , the TAT method decomposes the parameter
matrix into H component matrices, each of which corresponds to
the model parameters in each layer of the tree. In order to learn the
tree structure, we devise sequential constraints to make the distance
between the parameters in the component matrices corresponding
to each pair of tasks decrease over layers, and hence the compo-
nent parameters will keep fused until the topmost layer, once they
become fused in a layer. Moreover, to make the component param-
eters have chance to fuse in different layers, we develop a structural
sparsity regularizer, which is the sum of the `2 norm on the pairwise
difference among the component parameters, to learn layer-specific
task structure. In order to solve the resulting non-convex objective
function, we use the general iterative shrinkage and thresholding
(GIST) method. By using the alternating direction method of mul-
tipliers (ADMM) method, we decompose the proximal problem in
the GIST method into three independent subproblems, where a key
subproblem with the sequential constraints has an efficient solution
as the other two subproblems do. We also provide some theoreti-
cal analysis for the TAT model. Experiments on both synthetic and
real-world datasets show the effectiveness of the TAT model.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.2.8 [Database Man-
agement]: Database Applications—Data mining
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1. INTRODUCTION
Multi-task learning (MTL) [2] seeks to improve the generaliza-

tion performance of multiple learning tasks by sharing information
according to task relations. MTL has been applied in a wide range
of applications including medical risk evaluation, image annota-
tion, speech recognition, disease progression predication and so on.

From the perspective of information sharing, MTL models can
be classified into two categories based on task relations. The meth-
ods in the first category utilize some domain knowledge on the
task relations to devise learning models. For example, if tasks are
known to be positively correlated to each other, this knowledge can
be encoded into some novel regularizers [7, 6]. Moreover, some
domain knowledge which specifies the tree structure among tasks
has been utilized in [17, 9, 13]. However, such knowledge is rarely
available in most MTL applications, which limits the use of those
approaches. On the other hand, MTL methods in the second cat-
egory can identify the task relations and learn the model parame-
ters from data simultaneously. Those methods can provide insights
for the problems under investigation based on the task relations re-
vealed without any domain knowledge and hence they are the main
focus of our work.

Many algorithms belonging to the second category have been
proposed and shown good performance in a large number of appli-
cations. For example, low-rank structure based methods in [1, 3]
can learn model parameters sharing a low dimensional subspace
for multiple tasks, probabilistic MTL models [27, 25] place prob-
abilistic priors on multiple tasks to learn the model parameters as
well as identifying the task relations, regularized methods [26, 24]
can reveal pairwise task relations in term of a matrix, task grouping
methods [14, 16, 18] can detect the underlying task groups, robust
MTL model proposed in [4] can identify the existence of outlier
tasks, and some hierarchical models [15, 9, 21, 28, 12] organize the
task structure into hierarchies. All the works in the second cate-
gory are capable of learning some specific task structure when the
domain knowledge is absent.

As discussed previously, the use of the given tree structure, which
defines the task relations, has been investigated by some methods
[17, 9, 13] in the first category and it leads to significant improve-
ment in the performance. Even though learning the tree structure
is claimed by those works as one promising future direction, due
to the difficulty of defining and modeling the tree structure among
tasks, we are not aware of any existing work that can learn the mod-
el parameters and tree structure from data simultaneously under the
regularization framework. Moreover, there is even no formal defi-
nition for the tree structure in the MTL regime.



Table 1: Notations
Notation Description
x ∈ Rm A vector x with length m.
X ∈ Rd×m A matrix X with size d×m.
xi, xj , xij The ith row, jth column, and (i, j)th element

of a matrix X.
‖ · ‖q The `q norm defined on any vector x ∈ Rm,

i.e., ‖x‖q = (
∑m
i=1 |xi|q)

1
q .

‖ · ‖p,q The `p,q norm defined on a matrix X ∈ Rd×m,

i.e., ‖X‖p,q =
(∑d

j=1(
∑m
i=1 |xij |q)

p
q

) 1
p .

‖ · ‖F The matrix Frobenius norm.
〈·, ·〉 The inner product between matrices/vectors.
tr(·) The trace of a square matrix.
I An identity matrix with appropriate size.
Nm A set of integers {1, · · · ,m}.
N (µ, σ2) Normal distribution with mean µ and variance σ2.
(a1, · · · , an) A sequence.
(a, · · · , a)|n A sequence with n identical elements a.
./ The concatenate operator between two sequences,

i.e., A ./ B = (A,B) for sequences A and B.

In this paper, we aim to fill this gap. Firstly we formally define
the task tree structure for MTL. Based on the task tree, we develop
a TAsk Tree (TAT) method for MTL to learn the underlying task
tree and the model parameters simultaneously. By specifying the
number of layers in the tree or equivalently the height of the tree as
H , the TAT method decomposes the parameter matrix intoH com-
ponent matrices, each of which corresponds to the parameters in a
layer of the tree. In order to learn the tree structure among tasks,
we devise sequential constraints each of which makes the distance
between the component parameters in the component matrices for
a pair of tasks decrease over layers and as a consequence, the corre-
sponding component parameters will keep fused until the topmost
layer once they become fused in a layer. Moreover, to make the
component parameters have chance to fuse together in some layers,
a structural sparsity regularizer, which is defined as the sum of the
`2 norm on the pairwise difference among the component param-
eters, is used to learn layer-specific task structure. Learning the
parameters in the proposed TAT model is very challenging due to
the complex fused regularizer and the sequential constraints which
are non-convex. To solve the resulting objective function, we pro-
pose to use the general iterative shrinkage and thresholding (GIST)
method [8], which needs to solve a proximal problem. With the
help of the alternating direction method of multipliers (ADMM),
we can decompose the proximal problem into three independen-
t subproblems, where a key subproblem with the sequential con-
straint has an efficient solution as the other two subproblems do.
Moreover, we provide theoretical analysis for the TAT model. Ex-
periments on both synthetic and real-world datasets show that the
TAT model has competitive performance over state-of-the-art MTL
methods and additionally it can provide meaningful task tree struc-
ture to demonstrate the interpretability.

2. THE TAT MODEL
For clear presentation, we list the frequently used notations in

Table 1. Suppose we have m learning tasks in a d-dimensional
space. The training data for the ith task is denoted by (Xi,yi),
where Xi ∈ Rni×d is the data matrix with ni training samples
stored in the rows, and yi ∈ Rni is a vector of labels for the ni
training samples in Xi. If the labels are continuous, this problem
is a multi-task regression problem and otherwise a multi-task clas-
sification problem. The linear function for the ith task is defined as

Figure 1: An example of the task tree with 3 layers.

µi(x) = wT
i x, where an offset is assumed to be absorbed into wi.

W = [w1, · · · ,wm] ∈ Rd×m is defined as the parameter matrix.
First, we assume that the parameter matrix W can be decom-

posed into H component matrices as

W =

H∑
h=1

Wh, (1)

where Wh = [wh,1, · · · ,wh,m] ∈ Rd×m is the component ma-
trix corresponding to the hth layer and wh,i is the parameter for the
ith task at the hth layer. Then based on the decomposable structure
of W, we can define a task tree used to specify the tree structure in
MTL as follows.

DEFINITION 1 (TASK TREE). By assuming H layers in the
tree structure (H ≥ 2), i.e. the height of the tree beingH , {Wh}Hh=1

form a task tree if they satisfy the following conditions:

• The model parameters of different tasks corresponding to the
hth layer are stored in the component matrix Wh;

• For any pair of tasks, for example, the ith and jth tasks, if the
corresponding component parameters in the hth layer satis-
fies that wh,i = wh,j , then wh′,i = wh′,j should hold in
all the above layers where h′ ≥ h.

Note that the task tree in definition 1 can be any type of tree.
Fig. 1 shows an example of the task tree with 3 layers. The leaf
nodes in the tree represent tasks, whose relations with each other
are represented by a task tree. Each internal node reveals the re-
lations among tasks corresponding to the leaf nodes of a subtree
rooted at it. By assuming that the feature dimensionality d equals
1, then each Wh reduces to a vector for h ∈ {1, 2, 3}. The compo-
nent parameters Wh’s corresponding to each layer are shown at the
right side of Fig. 1, where the component parameters with identical
values are plotted in the same color.

In order to make the component parameters {Wh}Hh=1 form a
task tree, we devise sequential constraints on them as

|wh−1,i −wh−1,j | � |wh,i −wh,j |,∀h ≥ 2, ∀i < j, (2)

where | · | denotes the elementwise absolute value and � is the el-
ementwise ‘no smaller than’ operation. The sequential constraints
in Eq. (2) impose a non-increasing order for the pair distance be-
tween tasks from the bottom layer to the top one. It is easy to see
that once wh,i = wh,j for one pair of tasks at the hth layer for
some h, then the sequential constraints in Eq. (2) can guarantee
that wh′,i = wh′,j for any h′ > h. So the component parameters
{Wh}Hh=1 satisfying Eq. (2) can form a task tree.

Moreover, in order to make the component parameters of each
pair of tasks possible to be fused, e.g., wh,i becoming identical to
wh,j , we use a structurally sparse regularizer Ω(W) on the com-
ponent matrices as

Ω(W) =
H∑
h=1

λh

d∑
i<j

‖wh,i −wh,j‖2,



where λ1, · · · , λH are positive regularization parameters to spec-
ify the importance of different layers. Based on the use of the `2
norm, Ω(W) encourages each pair of the columns wh,i and wh,j

to be identical. If this happens, the condition in Definition 1 can be
satisfied.

By combining the above considerations, we formulate the objec-
tive function of the TAT model as

min
W
L(W) +

H∑
h=1

λh

d∑
i<j

‖wh,i −wh,j‖2

s.t. |wh−1,i −wh−1,j | � |wh,i −wh,j |,∀h ≥ 2, ∀i < j, (3)

where L(·) denotes a loss function. In this paper, we consider the
square loss L(W) =

∑m
i=1

1
mni
‖yi−Xi

∑H
h=1 wh,i‖22, and oth-

er loss functions can be accordingly adopted in a similar way.
The regularization parameter λh control the strength of the task

similarity at the hth layer. A larger λh will lead to more identical
task parameters in the corresponding component matrix. Therefore,
it is intuitive to define a non-decreasing order for the λh’s from the
bottom layer to the top one to help construct the tree structure. In
practice, we set λh = φλh−1 for h ≥ 2 with some constant φ > 1.

It is easy to show that problem (3) is non-convex due to the non-
convexity of the sequential constraints and the regularizer Ω(W)
is non-smooth, making solving it very challenging. In the next sec-
tion, we show how to solve problem (3) efficiently.

3. OPTIMIZATION PROCEDURE
In this section, we discuss how to solve problem (3). The main

idea is to use the GIST method [8], which involves solving a prox-
imal problem via the ADMM, to solve problem (3).

Since problem (3) is non-convex, we adopt the GIST method to
solve it. The GIST method solves a problem with the following
form:

min
W

f(W) + r(W),

where f(·) is convex and Lipschitz continuous, and r(·) can be
non-convex. In order to apply the GIST method, we define f(W) =
L(W) and r(W) as a non-convex extended real-value function
with the formulation as

r(W) =

 Ω(W), if |wh−1,i −wh−1,j | � |wh,i −wh,j |
for any h ≥ 2, i < j,

+∞, otherwise.

According to [8], the proximal operator at the (k+ 1)th iteration in
the GIST method is

W(k+1) = arg min
W

f
(
W(k)

)
+
τk

2

∑
h

‖Wh −W
(k)
h ‖

2
F + r(W)

+
∑
h

〈
∇Wh

f(W(k)),Wh −W
(k)
h

〉
, (4)

where W(k) denotes the estimation in the kth iteration with W
(k)
h

as its hth component matrix, ∇Whf(W(k)) denotes the gradient
of f(W) with respect to Wh at W(k), and τk is determined via
a line search method as described in Algorithm 1. By omitting the
constant part, problem (4) can be simplified as

W(k+1) = arg min
W

τk

2

∑
h

‖Wh −Vh‖2F + r(W), (5)

where Vh = W
(k)
h − 1

τk
∇Whf(W(k)). For all h ∈ NH , the

gradients ∇Whf(W(k))’s are identical, where the ith column of
∇Whf(W(k)) can be easily computed as 2

mni
XT
i (Xiw

(k)
i − yi)

for any h. The GIST algorithm is presented in Algorithm 1.

Algorithm 1 The GIST algorithm for solving problem (3).
Input: X, Y, H;
Output: W =

∑
h Wh;

1: Initialize W
(0)
1 , · · · ,W(0)

H , η > 1, τmin, τmax, ϕ ∈ (0, 1), k = 0;
2: repeat
3: τk ∈ [τmin, τmax];
4: repeat
5: Solve the proximal problem (5) with τk;
6: τk = ητk;
7: until F (W(k+1)) ≤ F (W(k))− ϕ

2
τk‖W(k+1) −W(k)‖22;

8: k := k + 1;
9: until Some convergence criterion is satisfied;

3.1 Solving Proximal Problem (5)
In the GIST algorithm, we only need to solve the proximal prob-

lem (5). Since r(·) is an extended real-value function, problem (5)
can be reformulated as

min
W

τ

2

∑
h

‖Wh −Vh‖2F +
∑
h

λh
∑
i<j

‖wh,i −wh,j‖2,

s.t. |wh−1,i −wh−1,j | � |wh,i −wh,j |, h ≥ 2, i < j, (6)

where for notational simplicity we omit the index k. Unfortunately,
problem (6) is still non-convex due to the sequential constraints and
it is still non-smooth. By introducing new variables, we use the
ADMM method to solve problem (6).

We define an auxiliary sparse matrix

C =

 1 −1 0 0 · · ·
1 0 −1 0 · · ·
...

. . .
...

 ∈ R
m(m−1)

2
×m,

where each row of C contains only two non-zero entries 1 and −1
at corresponding locations. By defining new variables {Qh}Hh=1 as
Qh = CWT

h , we can get

‖Qh‖1,2 =
∑
i<j

‖wh,i −wh,j‖2.

Similarly, by introducing variables {Ph}Hh=1 as a copy of {Qh}Hh=1,
problem (6) can be reformulated as

min
W

τ

2

∑
h

‖Wh −Vh‖2F +
∑
h

λh‖Ph‖1,2

s.t.Ph = Qh, Qh = CWT
h , ∀h,

|qih−1| � |q
i
h|, ∀h ≥ 2, i ∈ Nm(m−1)/2. (7)

In order to use the ADMM method, we define the augmented
Lagrangian function as

L̄(W,P,Q) =
τ

2

∑
h

‖Wh −Vh‖2F +
ρ

2
‖Qh −CWT

h ‖
2
F

+
∑
h

tr
(
ΘT
h (Ph −Qh)

)
+
ρ

2

∑
h

‖Ph −Qh‖2F

+
∑
h

tr
(
ΓTh (Qh −CWT

h )
)

+
∑
h

λh‖Ph‖1,2,

where P denotes the set of {Ph}Hh=1, Q denotes the set of {Qh}Hh=1,
{Θh}Hh=1 and {Γh}Hh=1 acts as Lagrangian multipliers, and ρ is a
penalty parameter. Then we need to solve the following problem as

min
W,P,Q

L̄(W,P,Q), s.t. |qih−1| � |q
i
h|, h ≥ 2, i ∈ Nm(m−1)/2. (8)

In the ADMM algorithm whose procedure is presented in Algorithm
2, problem (8) can be solved alternatively with respect to W, P,
and Q. In the following, we discuss how to solve those three sub-
problems corresponding to steps 4-6 in the ADMM algorithm.



Algorithm 2 The ADMM algorithm for solving problem (8).

Input: X, Y, H , W
(0)
h ;

Output: W =
∑
h Wh;

1: Initialize {P(0)
h ,Q

(0)
h ,Θ

(0)
h ,Γ

(0)
h }

H
h=1;

2: Set ρ = 0.1 and t = 0;
3: repeat
4: Solve W

(t+1)
h with fixed P

(t)
h and Q

(t)
h ;

5: Solve P
(t+1)
h with fixed W

(t)
h and Q

(t)
h ;

6: Solve Q
(t+1)
h with fixed W

(t)
h and P

(t)
h ;

7: Update Θ
(t+1)
h = Θ

(t)
h + ρ

(
P

(t)
h −Q

(t)
h

)
;

8: Update Γ
(t+1)
h = Γ

(t)
h + ρ

(
Q

(t)
h −C

(
W

(t)
h

)T)
;

9: t := t+ 1;
10: until Some convergence criterion is satisfied;

3.1.1 Solving Problem (8) w.r.t. W

With fixed P and Q, we need to solve the following subproblem
with respect to W as

min
W

τ

2

∑
h

‖Wh −Vh‖2F +
ρ

2

∑
h

‖Qh −CWT
h ‖

2
F

+
∑
h

tr
(
ΓTh

(
Qh −CWT

h

))
. (9)

Problem (9) can be decomposed into H separable problems, each
of which can be solved analytically based on the stationary condi-
tion where the solution can computed as

Wh =
(
τVh + (ρQh + Γh)T C

)
(τI + ρCTC)−1. (10)

Since (τI+ρCTC)−1 is a constant matrix, it can be pre-computed
and stored, leading to efficient computation of Eq. (10).

3.1.2 Solving Problem (8) w.r.t. P

With fixed W and Q, P can be obtained by solving the follow-
ing problem:

min
P

ρ

2

∑
h

‖Ph − Sh‖2F +
∑
h

λh‖Ph‖1,2, (11)

where Sh = Qh − 1
ρ
Θh. Problem (11) can be decomposed into

1
2
Hm(m−1) independent problems with one problem correspond-

ing to a row of matrix Ph formulated as

min
pi
h

ρ

2
‖pih − sih‖

2
2 + λh‖pih‖2, (12)

where sih is the ith row of Sh. Problem (12) is widely studied in
the group Lasso and admits a closed-form solution as

pih =

(
1−

λh

ρ‖sih‖2

)
+

sih, (13)

where (x)+ = max(0, x) is a thresholding operator.

3.1.3 Solving Problem (8) w.r.t. Q

The remaining problem is to solve Q, which is a key step. In
problem (8), the sequential constraints bring challenges to solve
it. With the given W and P, we can update Q by solving the
following problem as

min
Q

ρ

2

∑
h

‖Qh −Uh‖2F , s.t. |qih−1| � |q
i
h|, ∀h ≥ 2, (14)

where Uh = 1
2

(
Ph + CWT

h − 1
ρ
Γh + 1

ρ
Θh

)
. Obviously prob-

lem (14) can be decomposed into 1
2
m(m− 1)d independent prob-

lems each of which is formulated as

min
{qi

h,j
}H
h=1

∑
h

(
qih,j − û

i
h,j

)2
, s.t. |qih−1,j | ≥ |q

i
h,j |, ∀h ≥ 2, (15)

where qih,j and ûih,j are the (i, j)th elements of Qh and Uh re-
spectively. For simplicity, we omit the scripts i and j in problem
(15), and get

min
{qh}Hh=1

∑
h

(qh − ûh)2 , s.t. |qh−1| ≥ |qh|, ∀h ≥ 2. (16)

Note that we have

(qh − ûh)2 = (sign(qh)|qh| − ûh)2 = (|qh| − sign(qh)ûh)2,

where sign(·) denotes the sign function. qh must have the same
sign as ûh since otherwise we can change the sign of qh to achieve
a lower objective function value for problem (16). So by defining
q̄h = |qh| and ūh = |ûh|, problem (16) is equivalent to the follow-
ing problem:

min
{q̄h}Hh=1

∑
h

(q̄h − ūh)2 , s.t. q̄1 ≥ q̄2 ≥ · · · ≥ q̄H . (17)

After solving problem (17), we can recover the solution of problem
(16) as qh = sign(ûh)q̄h. Note that problem (17) is convex. In the
next section, we show that problem (17) can be solved efficiently
in O(H) complexity.

3.2 Solving Problem (17)
In each iteration of the ADMM method, problem (17) needs to

be solved form(m−1)d/2 times, hence it requires a very efficient
solution.

In the following analysis, a sequence (q̄′1, · · · , q̄′H) is said to
be better (worse) than another sequence (q̄′′1 , · · · , q̄′′H) for problem
(17) if both the sequences are feasible for problem (17), i.e. satis-
fying the sequential constraints, and the objective value of problem
(17) at (q̄′1, · · · , q̄′H) is smaller (larger) than that at (q̄′′1 , · · · , q̄′′H).

In order to solve problem (17), we first introduce some useful
lemmas to reveal interesting properties.

LEMMA 1. Problem (17) has the following properties:

1. if ū1 ≥ ū2 ≥ · · · ≥ ūH , then the optimal solution (q̄∗1 , q̄
∗
2 ,

· · · , q̄∗H) is (ū1, ū2, · · · , ūH);

2. if ū1 ≤ ū2 ≤ · · · ≤ ūH , then the optimal solution (q̄∗1 , q̄
∗
2 ,

· · · , q̄∗H) is (u∗, · · · , u∗)|H , where u∗ = 1
H

∑H
h=1 ūh.

LEMMA 2. For any sequence (ū1, · · · , ūH), if the optimal so-
lution of problem (17) is (u∗, · · · , u∗)|H , then for any u∗ ≥ u′ ≥
b1 or bH ≥ u′ ≥ u∗, the sequence (b1, · · · , bH), where b1 ≥
· · · ≥ bH , is not better than (u′, · · · , u′)|H .

Based on the properties revealed in Lemmas 1 and 2, we can
present the following important theorem.

THEOREM 1. For any two sequences (ū1, · · · , ūl) and (ūl+1,
· · · , ūn) which define two instances of problem (17), if the opti-
mal solutions for them are (u̇∗, · · · , u̇∗)|l and (ü∗, · · · , ü∗)|n−l,
respectively, then

1. if u̇∗ ≥ ü∗, the optimal solution for the concatenated se-
quence (ū1, · · · , ūl) ./ (ūl+1, · · · , ūn), i.e. (ū1, · · · , ūl,
ūl+1, · · · , ūn), is (u̇∗, · · · , u̇∗)|l ./ (ü∗, · · · , ü∗)|n−l;



2. otherwise, the optimal solution for the concatenated sequence
is (u∗, · · · , u∗)|n, where u∗ = 1

n

∑n
i=1 ūi.

Theorem 1 implies that we can obtain the solution of any se-
quence (ū1, · · · , ūn) in problem (17), if the sequence is a concate-
nation from two sub-sequences, where the optimal solutions cor-
responding to the two sub-sequences take the form that the entries
in a solution have the same value. Finally, based on Theorem 1,
we devise Algorithm 3 to solve problem (17) with its correctness
guaranteed by the following theorem.

THEOREM 2. For any input sequence (ū1, · · · , ūH) in prob-
lem (17), Algorithm 3 can find the optimal solution.

Algorithm 3 The algorithm for solving problem (17).

Input: (ū1, · · · , ūH);
Output: (q∗1 , · · · , q∗H);
1: Scan the sequence (ū1, · · · , ūH) once to split it intoK non-decreasing

sub-sequences (S1, · · · , SK) and calculate the solutions for those sub-
sequences based on Lemma 1;

2: Push S1 into a stack;
3: for k = 2 : K do
4: Push Sk into the stack;
5: while there are at least two sequences in the stack do
6: Pop the first and second sequences from the stack and denote the

solutions for them as ü∗ and u̇∗ separately;
7: if u̇∗ < ü∗ then
8: Concatenate the two sequences under the second condition in

Theorem 1 and then push the concatenated sequence into the
stack;

9: else
10: Push the two sequences into the stack without any operation;
11: Break;
12: end if
13: end while
14: end for
15: Concatenate the solutions of the sequences in the stack from bottom to

top and output the concatenated solution;

3.3 Time Complexity
In this section, we analyze the time complexity of the whole op-

timization procedure for solving the TAT model.
We first discuss the time complexity of Algorithm 3, since it is

the inner most one. In Algorithm 3, step 1 only needs to scan the
input sequence once and thus it needs O(H) time. Although there
exist two loops from step 3 to 14, the maximum number of the con-
catenation operations in step 8 is K − 1 and this step costs O(H).
For the concatenation operation, the computation of the analytical
solution in Theorem 1 is very efficient, since it only needs to com-
pute the average of the entries in two sequences. We can record the
average and the number of the entries in each sequence, and then
each concatenation operation only needsO(1) time. Therefore, Al-
gorithm 3 can be executed in O(H) time complexity.

In Algorithm 2, the computation of the solution for W with each
component Wh in Eq. (10) takes O

(
m3Hd

)
time. The computa-

tion of the solution for matrix P needs O(m2H) time. For solving
Q, Algorithm 3 needs to be executed form(m−1)d/2 times, hence
the time cost is O(m2Hd). So the time complexity of each itera-
tion in Algorithm 2 is O

(
m3Hd

)
. By assuming that Algorithms 1

and 2 needN1 andN2 iterations to converge, respectively, the total
time complexity for solving the TAT model is O

(
N1N2m

3Hd
)
.

In our experiments, we empirically find that both Algorithm 1
and Algorithm 2 need very small numbers of iterations to converge.
Therefore, the overall algorithm for solving the TAT model is very

efficient. Moreover, according to Section 3.1, the subproblems for
W, P, and Q can be decomposed into a large number of inde-
pendent problems, which can be parallelized to further improve the
efficiency.

4. THEORETICAL ANALYSIS
In this section, we provide theoretical analysis for the TAT mod-

el. For notational simplicity, we assume that the numbers of train-
ing samples for all the tasks are the same and denote it by n. The
general case that different tasks have different numbers of training
samples can be similarly analyzed.

We assume that the true relation between the data sample and its
label is a linear function plus a Gaussian noise, which is defined as
yji = (x

(i)
j )Tw∗i +εji, i ∈ Nm, j ∈ Nn, where x

(i)
j is the jth data

point of the ith task with yji as its label, W∗ = [w∗1 , . . . ,w
∗
m] is

the true parameter matrix, and all the εji’s are independent Gaus-
sian noises sampled from N (0, σ2). We assume that W∗ can be
decomposed into H true component matrices W∗

1 , . . . ,W
∗
H as

W∗ =
∑H
h=1 W∗

h, where those component matrices satisfy the
sequential constraints in problem (3). We define f∗i = Xiw

∗
i

and yi = f∗i + εi for i ∈ Nm, where εi = [ε1i, . . . , εni]
T .

Let X ∈ Rdm×mn be a diagonal block matrix with XT
i as the

ith block for i ∈ Nm. We define a vectorization operator vec(·)
over an arbitrary matrix X ∈ Rd×m to concatenate its columns as
vec(X) = [xT1 , · · · ,xTm]T . Let F∗ = [f∗1 , . . . , f

∗
m] ∈ Rn×m.

For any matrix X ∈ Rd×m, we define E(X) = {(i, j)|xi 6=
xj , i, j ∈ Nm} and its complement Ec(X) = {(i, j)|xi = xj , i ∈
Nm, j ∈ Nm, i 6= j}. For any matrix X ∈ Rd×m, since each pair

(i, j) corresponds to one row in CXT ∈ R
m(m−1)

2
×d, which is

xTi − xTj , the projections of the rows in CXT onto the set E(X),

denoted by
(
CXT

)E(X)
, consist of the rows with non-zero `2

norms in CXT , and similar definitions can be made for the set
Ec(X). We define D(X) as the set of indices for distinct column
vectors in X, i.e., for any i, j ∈ D(X), xi 6= xj . We denote by
XD(X) the projection of the columns of X onto the set D(X) and
the complement of D(X) by Dc(X).

In order to analyze the TAT model, we need the following as-
sumption.

ASSUMPTION 1. Let Ŵ =
∑H
h=1 Ŵh be the optimal solu-

tion of problem (3). For any matrix W =
∑H
h=1 Wh ∈ Rd×m

and h ∈ NH , we define matrix ∆h as ∆h = Wh − Ŵh and
matrix Γh as Γh = CWT

h − CŴT
h . Let ∆ =

∑H
h=1 ∆h. We

assume that there exist positive scalars βh, θh ≥ 1, and γh ≥ 1
such that

βh = min
∆h 6=0

‖XT vec(∆)‖2
√
mn‖∆D(Wh)

h ‖F
,

‖∆h‖F = θh‖∆
D(Wh)
h ‖F ,

‖Γh‖1,2 = γh‖Γ
E(Wh)
h ‖1,2.

Assumption 1 refers to the restricted eigenvalue assumption as
introduced in [20] and similar assumptions are commonly used in
the MTL literature, e.g., [4, 12]. Based on Assumption 1, we can
analyze the TAT model in the following theorem.1

THEOREM 3. Let Ŵ =
∑H
h=1 Ŵh be the optimal solution of

problem (3) and define C =
∑H
h′=1

λh′ (θh′+1)

βh′
. If the regulariza-

1Due to page limitations, we put the proof at http://www.comp.hkbu.
edu.hk/~leihan/.



tion parameters λh for any h ∈ NH satisfies2

λh ≥
2σ
√
m+ δ/d

m(m− 1)n
, (18)

then under Assumption 1, the following results hold with probabil-
ity at least 1− exp(− 1

2
(δ − dm log(1 + δ

dm
))):

‖XT vec(Ŵ)− vec(F∗)‖22 ≤ m(m− 1)2ndC2, (19)

‖Ŵh −W∗
h‖F ≤

θh(m− 1)
√
dC

βh
, (20)

‖CŴT
h −C(W∗

h)T ‖1,2 ≤
γh(m− 1)2dC

βh
. (21)

In addition, if the following condition holds for h ∈ NH :

min
(i,j)∈E(W∗

h
)

∥∥∥∥[C(W∗
h)T

](i,j)∥∥∥∥
2

>
2dγh(m− 1)2C

βh
, (22)

where
[
C(W∗

h)T
](i,j)

denotes one row in C(W∗
h)T correspond-

ing to the pair (i, j), then with probability at least 1−exp(− 1
2
(δ−

dm log(1 + δ
dm

))), the following set

Êh =

{
(i, j)

∣∣∣∣∥∥∥∥(CŴh

)(i,j)
∥∥∥∥

2

>
dγh(m− 1)2C

βh

}
(23)

can recover the true task structure E(W∗
h) at the hth layer of the

task tree, i.e. Êh = E(W∗
h) and (Êh)c = Ec(W

∗
h).

Theorem 3 provides important theoretical guarantees for the TAT
model. Specifically, those bounds measure how well our model
can approximate the ground truth of the component matrix W∗

h as
well as the true parameter matrix W∗ =

∑H
h=1 W∗

h. Moreover,
if the assumptions in Eq. (22) can be satisfied, the TAT model can
recover the true task tree with high probability based on Eq. (23).

5. RELATED WORK
The proposed TAT model is related to some hierarchical MTL

methods [15, 9, 28, 12], since those works assume the tasks are or-
ganized as hierarchies, which in some sense are a bit similar to the
layers in the proposed task tree. However, the hierarchical structure
proposed in those works cannot be organized as a tree and different
hierarchies in them are independent of each other, which is totally
different from the proposed TAT model where different layers in
the task tree follow the sequential constraints in Eq. (2).

The TAT model is also related to some task grouping methods
[14, 16, 18]. The task grouping methods aim to learn clusters for
tasks, and therefore they are just corresponding to the bottom layer
of the task tree in the TAT model.

6. EXPERIMENTS
In this section, we conduct empirical experiments on both syn-

thetic and real-world problems to study the proposed TAT method.
We compare the TAT method with several state-of-the-art MTL
models, including the multi-task feature learning (MTFL) mod-
el [19],3 the dirty model (Dirty) [15],3 the Cascade model [28],
the clustered multi-task learning (CMTL) model [14],4 the group-
ing and overlap MTL (GOMTL) model [18], and the multi-level
task grouping (MeTaG) model [12]. Among these competitors, the

2In the TAT model, we assume an increasing order for {λ1, · · · , λH} and
hence only λ1 needs to satisfy Eq. (18).

3
http://www.yelab.net/software/

4
http://cbio.ensmp.fr/~ljacob/documents/cmtl-code.tgz

MTFL method learns common feature representation for multiple
tasks, the Dirty and Cascade models are representatives of the hi-
erarchical MTL models, the CMTL and GOMTL models are be-
longing to the task grouping approach, and the MeTaG model is a
combination of those two types.

The regularization parameters of all the methods in comparison
are determined via the validation dataset with the set of candidate
values as {10−8, 10−7, · · · , 103}. Moreover, in the same way we
choose φ, which defines λh

λh−1
, from a set {1.2, 2, 10} for the TAT

model. In addition to the regularization parameters, some of the
competitors include some additional hyper-parameters, including
the number of groups in the CMTL method, the dimension of la-
tent subspace in the GOMTL method, the number of cascades in the
Cascade method, the number of levels in the MeTaG method, and
the number of layers in our TAT model. Those hyper-parameters
are selected from a candidate set {1, 2, · · · , 10} because empiri-
cally we find that any value larger than 10 will lead to worse per-
formance for all the models under all the settings. In all the exper-
iments, we use the least square solution to initialize the parameter
matrix in the TAT model as a warm start.

6.1 Results on Synthetic Data
We first evaluate all the models on synthetic data. In order to

simulate different structures of the task tree, we adopt the bina-
ry tree structure and vary the height of the tree, which equals the
number of layers, according to the number of tasks. The number
of tasks m is equal to m = 2H

∗−1, where H∗ denotes the height
of the tree. We vary the number of tasks as m ∈ {4, 8, 16, 32, 64}
and the height of the tree H∗ ∈ {3, 4, 5, 6, 7} accordingly. Fig. 2
shows two examples of the task tree when H∗ = 4 and H∗ = 6.
We set the feature dimensionality to be d = 100. Then, based
on the task tree, we generate each component matrix W∗

h accord-
ing to the hth layer in the task tree. If there are k internal nodes
in the hth layer, the columns in W∗

h corresponding to the tasks,
whose corresponding leaf nodes belong to the subtree rooted at
each internal node, form a group and will have the same value. To
achieve this, we generate the component matrices from the top lay-
er to the bottom one. For the component matrix corresponding to
the top layer, all the columns are set to be identical and the entries
in the columns are generated from N (1, 1). Then, for any layer
below, the corresponding component matrix is generated based on
the component matrix in the upper layer by adding different nois-
es corresponding to different groups in current layer. The noises
in the column are absolute values of samples from N (0, 0.2). Fi-
nally, we generate the parameter matrix W∗ as W∗ =

∑
h W∗

h.
Based on W∗, the label vector yi for the ith task is generated
as yi = Xiw

∗
i + εi, where each entry in Xi is generated from

N (0, 1) and εi is a vector of noises with its entries generated from
N (0, 1). We use the mean square error (MSE) to measure the
performance of the estimation Ŵ, which is defined as MSE =

1
mn

∑m
i=1(ŵi−w∗i )TXT

i Xi(ŵi−w∗i ). In each setting, we gen-
erate ntr = 100 samples for training, nte = 100 samples for
testing, and nv = 100 samples as a validation set to select the
hyper-parameters in all the methods.

Table 2 shows the average performance of all the methods over
10 random simulations. As shown in Table 2, the MTFL has high
estimation errors under all the settings. One possible reason is that
it simply learns common feature representations but cannot cap-
ture the complex task tree structure. The task grouping models,
i.e. the CMTL and GOMTL methods, achieve lower estimation er-
rors than the hierarchial MTL models, i.e. the Dirty and Cascade
methods, since the task structure in each level of the task tree can
be viewed as task groups. The MeTaG model is a combination of



Table 2: The average MSE’s of different methods over 10 random simulations on synthetic data (mean ± standard derivative). The highlighted
numbers stand for the best results under the significance t-test with 95% confidence.

D
at

a
Num. of samples ntr, nte, nv = 100 ntr, nte, nv = 100 ntr, nte, nv = 100 ntr, nte, nv = 100 ntr, nte, nv = 100
Num. of features d = 100 d = 100 d = 100 d = 100 d = 100

Num. of tasks m = 4 m = 8 m = 16 m = 32 m = 64
Num. of layers H∗ = 3 H∗ = 4 H∗ = 5 H∗ = 6 H∗ = 7

M
od

el

MTFL 2.1878±0.1316 2.3961±0.1322 2.8297±0.1429 6.4354±0.1565 10.2075±0.2035
Dirty 0.9972±0.0611 1.0694±0.0763 1.1847±0.0772 1.3951±0.0754 1.9000±0.0661

Cascade 0.8950±0.0475 0.9049±0.0435 0.9173±0.0348 0.9487±0.0230 0.9690±0.0395
CMTL 0.1632±0.0676 0.2689±0.0190 0.2633±0.0093 0.3132±0.0129 0.3684±0.0069

GOMTL 0.1807±0.0163 0.2236±0.0366 0.4767±0.0337 0.4976±0.0481 0.3444±0.0168
MeTaG 0.2123±0.0177 0.2696±0.0178 0.3427±0.0225 0.3000±0.0136 0.3446±0.0087

TAT 0.1548±0.0113 0.2020±0.0165 0.2401±0.0105 0.2647±0.0101 0.3352±0.0066
Best H in TAT H = 3 H = 4 H = 5 H = 6 H = 6

Figure 2: Two examples of the task tree in the synthetic data, where
m = 2H

∗−1. Left: m = 8, H∗ = 4; right: m = 32, H∗ = 6.
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Figure 3: The top 4 layers in the learned task tree (H = 6) with two
representations for the synthetic data when H∗ = 6.

the task grouping and the hierarchical approaches and it can learn
multi-level task groups, which is similar to the task tree structure,
hence, it outperforms both the hierarchical MTL models and the
task grouping methods when the height of the task tree is high, e.g.,
H∗ = 6 or 7. Among all those methods, the proposed TAT mod-
el has the best performance under all the settings. In Table 2, we
record the bestH in the TAT model selected based on the candidate
set. From the results, we see that the estimatedH’s perfectly match
the ground truths, which implies that the proposed TAT model can
well capture the tree structure. This also explains why the TAT
model can consistently achieve good performance. The left figure
in Fig. 4 also reports the sensitivity analysis of the TAT model with
respect to H under different settings where each line corresponds
to a setting with the ground truthH∗ depicted in the legend and the
best selected H’s are denoted by solid markers. From the results,
we can find that the performance is not very sensitive to the number
of layers on this synthetic data.

Moreover, since the learned component matrices can be obtained
from the TAT model, we can obtain the learned task tree based on
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Figure 4: Sensitivity analysis of the TAT model w.r.t. H . Left figure:
Results on synthetic data where H∗ = 3, 4, 5, 6, 7 according to Table
2. Right figure: Results on the microarray, school and traffic datasets.
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Figure 5: Left figure: The number of iterations required in
Algorithm 2. Right figure: The change of Err when varying the num-
ber of iterations in Algorithm 1.

the component matrices. Due to the limited precision in the nu-
merical computation, the component parameters for tasks can not
be exactly identical and we use the normalized cut algorithm [22]
to discover the tree structure layer by layer where in each layer,
tasks from a group are assumed to belong to an internal node. Fig.
3 shows the top 4 layers of the learned task tree when H∗ = 6.
We provide two representations for the learned task tree. The first
one is the conventional tree representation and the second one is a
layerwise representation where the nodes in each layer denote the
component parameters in the corresponding component matrix and
they have the same color if they belong to one group or equivalent-
ly share the same parent node. By comparing with the true task
tree at the right side of Fig. 2, we can find that the TAT model has
good recovery for the binary tree in the top 4 layers. The left fig-
ure in Fig. 5 plots the number of iterations required by Algorithm
2 in each iteration of Algorithm 1, while the right figure shows
the change of the relative estimation error (Err), which is defined
as Err = ‖Ŵ −W∗‖F /‖W∗‖F , by varying the number of itera-
tions in Algorithm 1. From the results, we find that both algorithms
converge in a fast rate.

6.2 Results on Microarray Data
In this section, we conduct experiments on the microarray da-

ta [23],5 a benchmark dataset for MTL. The microarray data is
5
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC545783/
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Figure 6: The visualization of the task tree on the microarray data.
Top: tree obtained from the hierarchical clustering algorithm. Middle:
the learned task tree obtained from the TAT model with two represen-
tations. Bottom: the names of the genes.

a gene expression data set related to isoprenoid biosynthesis in
plant organism. One major challenge in this problem is to find
the cross-talks between two isoprenoid pathways: the mevalonate
pathway and the plastidial pathway. The tasks are regression prob-
lems where the data features are the expression levels of 21 genes
in the mevalonate pathway and the labels are the expression levels
of 18 genes in the plastidial pathway, resulting in 18 tasks. There
are 118 samples with each feature log-transformed and normalized
to have mean 0 and variance 1. According to [23], the genes ex-
hibit tree structure, making it suitable for learning the task tree. We
randomly select 60%, 20%, and 20% samples for training, testing,
and validation respectively. All the experiments are repeated for
10 times and the average MSE’s of different models are reported
in Table 3. From Table 3, we see that the TAT model achieves the
best performance over all the methods in comparison. We plot the
change of the performance of the TAT model with respect to H in
the right figure of Fig. 4 and find that the TAT model achieves the
best performance when setting H to be 5.

Moreover, we show the top 3 layers of the learned task tree in
Fig. 6 for the case that H = 5. Since there is no ground truth
for the tree structure among tasks, we compare with a tree structure
learned from a hierarchical clustering method, which first uses the
k-means clustering method to cluster different tasks into 3 clusters
and then groups to 2 clusters based on the clustering results in the
first step. From the results shown in Fig. 6 where the hierarchical
clustering result is at the top and the task tree is in the middle, we
see that the learned task tree by the TAT model is very similar to
the tree obtained from the hierarchical clustering method, which in
some sense demonstrates the ability of the TAT method to find the
underlying tree structure among tasks.

6.3 Results on School and Traffic Data
In this section, we experiment on the school and traffic data. The

school data6 is a data set with the exam scores of 15,362 students
from 139 secondary schools, where each student is described by
27 attributes. Each learning task is a regression problem to predict
the students’ exam scores at a school, leading to 139 regression
tasks. We randomly select 30%, 50% and 20% samples for training,
testing, and validation separately.

The traffic data [11] is to help understand the casual relationships
from the entries to the exits of vehicle flows, which is an important
problem in traffic systems. This dataset is collected from 272 sen-
sors placed in a highway network, where 136 sensors are placed in
the exits of the highways and the others are in the entries. Each exit
corresponds to one task and the information collected in entries is
considered as the data matrix shared by all the tasks. In each task,
there are 384 data samples. We randomly select 20%, 60% and
20% samples for training, testing and validation separately.

All the experiments are repeated for 10 times and the average
normalized MSE’s (nMSE), i.e. MSE/ 1

m

∑m
i=1

1
ni
‖y∗i ‖22, of dif-

ferent models are reported in Table 3. Similar to the microarray
data, the TAT method has the best performance on both datasets.
The best selected H’s on the two dataset are 6 and 7, respectively,
which are shown in the right figure of Fig. 4.

Table 3: The average (n)MSE’s of different methods over 10 random
splits on the microarray, school and traffic data.

Model Microarray School Traffic
MTFL 0.6342±0.0913 0.4393±0.0055 0.3523±0.0117
Dirty 0.6141±0.1104 0.4445±0.0051 0.3299±0.0077

Cascade 0.6112±0.0866 0.4366±0.0058 0.3228±0.0070
CMTL 0.6127±0.0887 0.4374±0.0066 0.3367±0.0096

GOMTL 0.6121±0.0877 0.6466±0.0444 0.3258±0.0052
MeTaG 0.6088±0.0881 0.4227±0.0049 0.3116±0.0068

TAT 0.5966±0.0784 0.4169±0.0032 0.3107±0.0069
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Figure 7: Sensitivity analysis of the TAT model on the CIFAR-10 and
CIFAR-100 datasets w.r.t. H . The best selected H’s are denoted by
solid markers.

6.4 Results on CIFAR Data
In this section, two popular object recognition databases, the

CIFAR-10 and CIFAR-100 datasets,7 are used in our experiments.
Each dataset consists of 50,000 color images with size 32× 32 for
training and 10,000 images for testing. The CIFAR-10 data con-
tains 10 classes and in the CIFAR-100 data, there are 100 classes.
Each class in those two datasets corresponds to a task and all the
tasks share the same training images. By following [5], we use the
nonlinear features derived from the k-means algorithm instead of
the raw pixels, where d = 6401. The GOMTL model fails to work
on those two datasets, since the Kronecker product that it requires
between two big matrices related to the feature dimensionality is

6
http://www.cs.ucl.ac.uk/staff/A.Argyriou/code/

7
http://www.cs.toronto.edu/~kriz/cifar.html



1 2 3 4 5 6 7 8 9 10La
ye

r 8

1 2 3 4 5 6 7 8 9 10La
ye

r 7

1 2 3 4 5 6 7 8 9 10La
ye

r 6

1 2 3 4 5 6 7 8 9 10La
ye

r 5

1 2 3 4 5 6 7 8 9 10La
ye

r 4

1 2 3 4 5 6 7 8 9 10La
ye

r 3

1 2 3 4 5 6 7 8 9 10La
ye

r 2

1 2 3 4 5 6 7 8 9 10La
ye

r 1

Figure 8: Two representations of the task tree on the CIFAR-10 data.

computationally prohibited and hence we do not include it in the
comparison. The classification accuracies of different models are
shown in Table 4. From the results, we can see that the TAT method
has the best performance on those two datasets. Moreover, Fig. 7
shows how the TAT model performs when varying H and we can
find that the best H’s in those two datasets are both equal to 8.

Moreover, the best learned task tree, which has 8 layers, on the
CIFAR-10 data is shown in Fig. 8. From Fig. 8, we can find some
interesting results. For example, tasks ‘automobile’ and ‘truck’ are
identified to belong to a group at the 7th layer while the other tasks
belong to another one. Tasks ‘cat’ and ‘dog’ always belong to the
same group in the task tree and all the tasks related to animals (i.e.,
bird, cat, deer, dog, frog, and horse) are discovered to belong to a
group at the 5th layer and above. Moreover, almost all the tasks re-
lated to manufactures (e.g. automobile, ship, and truck) are always
identified to belong to different groups below the 5th layer due to
their different shapes. All the above findings are intuitively reason-
able and this shows that the TAT model can find meaningful task
relations contained in the data.

Table 4: The accuracies of different methods on the CIFAR-10 and
CIFAR-100 datasets.

Data MTFL Dirty Cascade CMTL MeTaG TAT
CIFAR-10 71.15 72.56 74.76 74.49 75.99 76.49

CIFAR-100 39.61 42.45 46.12 46.70 48.62 49.63

6.5 Efficiency Testing for Algorithm 3

Table 5: Comparison on the total running time (in seconds).
Length 5 10 20 1000 5000 10000

Num. of seq. 1000 1000 1000 10 10 10
CVX 178.8 195.4 220.8 39.7 131.3 303.8

Algorithm 3 0.27 0.69 0.94 0.6 2.9 5.6
Speedup 662.2 283.1 234.9 66.2 45.3 54.3

In this section, we test the efficiency of Algorithm 3, which is
a key step in the whole optimization procedure and needs to be
executed frequently. We compare Algorithm 3 with the CVX solver
[10] since problem (17) is convex. The experimental platform is the
Matlab 2013b running on a machine with Intel i7 CPU and 8GB
RAM.

We generate random sequences to test Algorithm 3. The se-
quence in the sequential constraints is of length H and from the
previous experiments, we can see that it is usually small, e.g., a
constant between 2 and 10. We randomly generate 1000 sequences
with length 5, 10, and 20 respectively, and test the algorithms on
them. Moreover, we also do some experiments under the setting
that the length of the sequence is large and generate 10 sequences
with length 1000, 5000, and 10000 respectively. The total running
time for the two settings is reported in Table 5, from which we see
that the proposed Algorithm 3 is very efficient under all the settings.

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel TAT model to learn the un-

derlying tree structure for multi-task learning. We developed an ef-
ficient algorithm to solve the non-convex problem in the proposed
TAT model and provided theoretical analysis. Experimental results
show that the task tree learned by the TAT model can provide deep
understanding on the task relations contained in the data.

Currently, the number of layers in the TAT model needs to be
predefined. In future work, we are interested in learning the number
of layers from data automatically.
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APPENDIX
A. PROOF OF LEMMA 1
Proof. The first statement is obvious. We now adopt the induction
technique to prove the second statement.

When H = 2 and ū1 ≤ ū2, we assume the optimal solution is
(q̄∗1 , q̄

∗
2), where q̄∗1 ≥ q̄∗2 . If q̄∗1 > q̄∗2 , there must exist a q̌ that

q̄∗1 > q̌ > q̄∗2 and ū1 ≤ q̌ ≤ ū2. Otherwise, if ū1 ≤ ū2 < q̌ < q̄∗1 ,
we can immediately get q̄∗2 = ū2, and then (q̄∗2 , q̄

∗
2) is better than

(q̄∗1 , q̄
∗
2), which contradicts the fact that (q̄∗1 , q̄

∗
2) is the optimal so-

lution. The case that q̄∗2 < q̌ < ū1 ≤ ū2 can be proved simi-
larly. Now we have q̄∗1 > q̌ > q̄∗2 and ū1 ≤ q̌ ≤ ū2. Assume
q̌ = ū1+ū2

2
, we can immediately obtain that (q̌, q̌) is better than

(q̄∗1 , q̄
∗
2), which again contradicts the fact that (q̄∗1 , q̄

∗
2) is the opti-

mal solution. Therefore, we must have q̄∗1 = q̄∗2 = ū1+ū2
2

.
Then we assume that the statement holds for any H ≤ n − 1.

We will show that when H = n, the statement also holds. Actu-
ally, given H = n and ū1 ≤ · · · ≤ ūn, the optimal solution must
have the form (q̌, · · · , q̌)|n−1 ./ q̄∗n, i.e. (q̌, · · · , q̌, q̄∗n), where
q̌ ≥ q̄∗n. Otherwise, suppose the optimal solution is denoted by



(q̄′1, q̄
′
2, · · · , q̄′n) with at least one equality dissatisfied in inequali-

ties q̄′1 ≥ q̄′2 ≥ · · · ≥ q̄′n. Then we can immediately obtain a con-
tradiction that the sequence (q̌′, · · · , q̌′)|n−1 ./ q̄

′
n is better than

(q̄′1, q̄
′
2, · · · , q̄′n) where (q̌′, · · · , q̌′)|n−1 is the optimal solution of

the problem of size H = n − 1 corresponding to the sequence
(ū1, . . . , ūn−1). Similarly, we can get that the optimal solution
have the form q̄∗1 ./ (q̌, · · · , q̌)|n−1, i.e. (q̄∗1 , q̌, · · · , q̌), where
q̄∗1 ≥ q̌. Combing those results we complete the proof. �

B. PROOF OF LEMMA 2
Proof. We first prove it when u∗ ≥ u′ ≥ b1. Given any H =
n and the sequence (ū1, · · · , ūn), we consider the feasible se-
quence (b1, · · · , bn) for problem (17), where b1 ≥ · · · ≥ bn.
Then, we can obtain that the sequence (b1, · · · , b1)|n is not worse
than (b1, · · · , bn), because if (b1, · · · , b1)|n is worse, there must
exist a sequence (b̌2, · · · , b̌n), where u∗ > b̌2 ≥ · · · ≥ b̌n,
such that the optimal solution for the sub-sequence (ū2, · · · , ūn)
is (b̌2, · · · , b̌n), and in that case (u∗, b̌2, · · · , b̌n) is better than
(u∗, · · · , u∗)|n, which contradicts with the fact that (u∗, · · · , u∗)|n
is the optimal solution. Therefore (b1, · · · , b1)|n is better than
(b1, · · · , bn). Furthermore, since u∗ ≥ u′ ≥ b1, it is easy to
see that (u′, · · · , u′)|n is not worse than (b1, · · · , b1) due to the
convexity of the function f(x) =

∑
h(x − ūh)2. So we complete

the proof when u∗ ≥ u′ ≥ b1. The case that bH ≤ u′ ≤ u∗ can be
proved similarly and we finish the proof. �

C. PROOF OF THEOREM 1
Proof. The case that u̇∗ ≥ ü∗ is obvious. Then we prove the case
that u̇∗ < ü∗. In this case, we denote the optimal solution for
the concatenated sequence by (q̄∗1 , · · · , q̄∗l , q̄∗l+1, · · · , q̄∗n), where
q̄∗1 ≥ · · · ≥ q̄∗l ≥ q̄∗l+1 ≥ · · · ≥ q̄∗n. Then it is easy to show
that q̄∗l ≥ u̇∗, because if q̄∗l < u̇∗, substituting the sub-sequence
(q̄∗1 , · · · , q̄∗l ) with (u̇∗, · · · , u̇∗)|l in (q̄∗1 , · · · , q̄∗l , q̄∗l+1, · · · , q̄∗n)
will lead to a better feasible solution, which makes a contradic-
tion. Similarly, we can show that q̄∗l+1 ≤ ü∗. Then based on
Lemma 2, substituting the two sub-sequences (q̄∗1 , · · · , q̄∗l ) and
(q̄∗l+1, · · · , q̄∗n) with (q̄∗l , · · · , q̄∗l )|l and (q̄∗l+1, · · · , q̄∗l+1)|n−l re-
spectively will generate a new solution that is not worse than the
previous one. Note that q̄∗l ≥ u̇∗, q̄∗l+1 ≤ ü∗, u̇∗ < ü∗ and
q̄∗l ≥ q̄∗l+1. Then the optimal solution is achieved when q̄∗l = q̄∗l+1

due to the convexity of the objective function, making the opti-
mal solution have the form (u∗, · · · , u∗)|n. Plugging the form into
problem (17), we get u∗ =

∑n
i=1 ūi

n
, in which we reach the con-

clusion. �

D. PROOF OF THEOREM 2
Proof. In Algorithm 3, step 1 splits the initial sequence (ū1, · · ·
, ūH) into non-decreasing sub-sequences. According to Lemma 1,
the solutions for those non-decreasing sub-sequences take the for-
m that the entries in the solution are identical. Then, steps 2-14
concatenate the solutions of these sub-sequences according to The-
orem 1 iteratively. According to Theorem 1, the global optimality
can be guaranteed for any concatenation operation. So Algorithm
3 can find the optimal solution in step 15 for problem (17). �
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